# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import io import tarfile import numpy as np from PIL import Image import paddle from paddle.io import Dataset from paddle.utils import try_import from paddle.dataset.common import _check_exists_and_download __all__ = ["Flowers"] DATA_URL = 'http://paddlemodels.bj.bcebos.com/flowers/102flowers.tgz' LABEL_URL = 'http://paddlemodels.bj.bcebos.com/flowers/imagelabels.mat' SETID_URL = 'http://paddlemodels.bj.bcebos.com/flowers/setid.mat' DATA_MD5 = '52808999861908f626f3c1f4e79d11fa' LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d' SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c' # In official 'readme', tstid is the flag of test data # and trnid is the flag of train data. But test data is more than train data. # So we exchange the train data and test data. MODE_FLAG_MAP = {'train': 'tstid', 'test': 'trnid', 'valid': 'valid'} class Flowers(Dataset): """ Implementation of `Flowers `_ dataset Args: data_file(str): path to data file, can be set None if :attr:`download` is True. Default None, default data path: ~/.cache/paddle/dataset/flowers/ label_file(str): path to label file, can be set None if :attr:`download` is True. Default None setid_file(str): path to subset index file, can be set None if :attr:`download` is True. Default None mode(str): 'train', 'valid' or 'test' mode. Default 'train'. transform(callable): transform to perform on image, None for no transform. download(bool): download dataset automatically if :attr:`data_file` is None. Default True backend(str, optional): Specifies which type of image to be returned: PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}. If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` , default backend is 'pil'. Default: None. Examples: .. code-block:: python from paddle.vision.datasets import Flowers flowers = Flowers(mode='test') for i in range(len(flowers)): sample = flowers[i] print(sample[0].size, sample[1]) """ def __init__(self, data_file=None, label_file=None, setid_file=None, mode='train', transform=None, download=True, backend=None): assert mode.lower() in ['train', 'valid', 'test'], \ "mode should be 'train', 'valid' or 'test', but got {}".format(mode) if backend is None: backend = paddle.vision.get_image_backend() if backend not in ['pil', 'cv2']: raise ValueError( "Expected backend are one of ['pil', 'cv2'], but got {}" .format(backend)) self.backend = backend self.flag = MODE_FLAG_MAP[mode.lower()] self.data_file = data_file if self.data_file is None: assert download, "data_file is not set and downloading automatically is disabled" self.data_file = _check_exists_and_download( data_file, DATA_URL, DATA_MD5, 'flowers', download) self.label_file = label_file if self.label_file is None: assert download, "label_file is not set and downloading automatically is disabled" self.label_file = _check_exists_and_download( label_file, LABEL_URL, LABEL_MD5, 'flowers', download) self.setid_file = setid_file if self.setid_file is None: assert download, "setid_file is not set and downloading automatically is disabled" self.setid_file = _check_exists_and_download( setid_file, SETID_URL, SETID_MD5, 'flowers', download) self.transform = transform # read dataset into memory self._load_anno() self.dtype = paddle.get_default_dtype() def _load_anno(self): self.name2mem = {} self.data_tar = tarfile.open(self.data_file) for ele in self.data_tar.getmembers(): self.name2mem[ele.name] = ele scio = try_import('scipy.io') self.labels = scio.loadmat(self.label_file)['labels'][0] self.indexes = scio.loadmat(self.setid_file)[self.flag][0] def __getitem__(self, idx): index = self.indexes[idx] label = np.array([self.labels[index - 1]]) img_name = "jpg/image_%05d.jpg" % index img_ele = self.name2mem[img_name] image = self.data_tar.extractfile(img_ele).read() if self.backend == 'pil': image = Image.open(io.BytesIO(image)) elif self.backend == 'cv2': image = np.array(Image.open(io.BytesIO(image))) if self.transform is not None: image = self.transform(image) if self.backend == 'pil': return image, label.astype('int64') return image.astype(self.dtype), label.astype('int64') def __len__(self): return len(self.indexes)