/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/platform/place.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; #define CUDA_1D_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ i += blockDim.x * gridDim.x) template __global__ void ScatterCUDAKernel(const T* params, const int* indices, T* output, size_t index_size, size_t slice_size) { CUDA_1D_KERNEL_LOOP(i, index_size * slice_size) { int indices_i = i / slice_size; int slice_i = i - indices_i * slice_size; // offset inside the slice int scatter_i = indices[indices_i]; int out_i = scatter_i * slice_size + slice_i; *(output + out_i) = *(params + i); } } /** * A thin wrapper on gpu tensor * Return a new updated tensor from source tensor, scatter-assigned according to * index * input[src]: type-T source Tensor * input[index]: type-int index Tensor (1-D) * return: output tensor */ template void GPUScatterAssign(const platform::DeviceContext& ctx, const Tensor& src, const Tensor& index, Tensor* output) { // PADDLE_ENFORCE(platform::is_gpu_place(place)); // check index of shape 1-D PADDLE_ENFORCE(index.dims().size() == 1); int index_size = index.dims()[0]; auto src_dims = src.dims(); framework::DDim output_dims(src_dims); output_dims[0] = index_size; // slice size int slice_size = 1; for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i]; const T* p_src = src.data(); const int* p_index = index.data(); T* p_output = output->data(); int block = 512; int n = slice_size * index_size; int grid = (n + block - 1) / block; ScatterCUDAKernel<<< grid, block, 0, reinterpret_cast(ctx).stream()>>>( p_src, p_index, p_output, index_size, slice_size); } } // namespace operators } // namespace paddle