// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/jit/engine/interpreter_engine.h" #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph_helper.h" #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/framework/new_executor/interpretercore.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/phi/core/enforce.h" namespace paddle { namespace jit { InterpreterEngine::InterpreterEngine(const std::shared_ptr &info, const VariableMap ¶ms_dict, const phi::Place &place) : info_(info), place_(place) { info_->RemoveDescFeedFetch(); PADDLE_ENFORCE_GT( static_cast(info_->ProgramDesc().Block(0).OpSize()), 0, platform::errors::PreconditionNotMet( "There is no operator in ProgramDesc.")); utils::ShareParamsIntoScope(info_->ParamNames(), params_dict, &scope_); VLOG(6) << framework::GenScopeTreeDebugInfo(&scope_); CreateInterpreterCore(); } void InterpreterEngine::CreateInterpreterCore() { auto &program_desc = info_->ProgramDesc(); // apply inference pass framework::ir::Graph graph{program_desc}; auto pass = framework::ir::PassRegistry::Instance().Get("delete_dropout_op_x_pass"); pass->Apply(&graph); #ifdef PADDLE_WITH_MKLDNN auto mkldnn_pass = framework::ir::PassRegistry::Instance().Get("mkldnn_placement_pass"); mkldnn_pass->Set("mkldnn_enabled_op_types", new std::unordered_set({})); mkldnn_pass->Apply(&graph); #endif GraphToProgram(graph, &converted_prog_, nullptr); auto in_names = info_->InputArgNames(); auto out_names = info_->OutputArgNames(); std::set skip_gc_vars; skip_gc_vars.insert(in_names.begin(), in_names.end()); skip_gc_vars.insert(out_names.begin(), out_names.end()); inner_interpreter_ = std::make_shared(place_, converted_prog_.Block(0), /*skip_gc_vars=*/skip_gc_vars, &scope_, /*used_for_jit=*/true); } std::vector InterpreterEngine::operator()( const std::vector &inputs) { auto dense_tensors = utils::ToDenseTensors(inputs); return utils::ToTensors(this->operator()(dense_tensors)); } std::vector InterpreterEngine::operator()( const std::vector &inputs) { utils::ShareIntoScope(info_->InputArgNames(), inputs, &scope_); // the latter can be moved to python side. auto &feed_names = info_->InputArgNames(); auto &fetch_names = info_->OutputArgNames(); paddle::framework::FetchList outs = inner_interpreter_->Run(feed_names); std::vector outputs; utils::FetchOuts(info_->OutputArgNames(), scope_, &outputs); scope_.DropKids(); return outputs; } const std::shared_ptr &InterpreterEngine::Info() const { return info_; } } // namespace jit } // namespace paddle