// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/memory/allocation/allocator_facade.h" #include "gflags/gflags.h" #include "paddle/fluid/memory/allocation/aligned_allocator.h" #include "paddle/fluid/memory/allocation/allocator.h" #include "paddle/fluid/memory/allocation/allocator_strategy.h" #include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h" #include "paddle/fluid/memory/allocation/cpu_allocator.h" #include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h" #include "paddle/fluid/memory/allocation/retry_allocator.h" #include "paddle/fluid/memory/allocation/stat_allocator.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/place.h" #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #include #include "paddle/fluid/memory/allocation/cuda_allocator.h" #include "paddle/fluid/memory/allocation/cuda_managed_allocator.h" #include "paddle/fluid/memory/allocation/pinned_allocator.h" #include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h" #include "paddle/fluid/memory/allocation/thread_local_allocator.h" #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/phi/backends/gpu/gpu_context.h" #ifdef PADDLE_WITH_CUDA #include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h" #endif #if CUDA_VERSION >= 10020 #include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h" #include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h" #include "paddle/fluid/platform/dynload/cuda_driver.h" #endif #endif #ifdef PADDLE_WITH_XPU #include "paddle/fluid/platform/device/xpu/xpu_info.h" #endif #ifdef PADDLE_WITH_ASCEND_CL #include "paddle/fluid/memory/allocation/npu_pinned_allocator.h" #endif #ifdef PADDLE_WITH_IPU #include "paddle/fluid/platform/device/ipu/ipu_info.h" #endif #ifdef PADDLE_WITH_MLU #include "paddle/fluid/platform/device/mlu/mlu_info.h" #endif #ifdef PADDLE_WITH_CUSTOM_DEVICE #include "paddle/fluid/memory/allocation/custom_allocator.h" #include "paddle/fluid/platform/device/device_wrapper.h" #endif PADDLE_DEFINE_EXPORTED_int64( gpu_allocator_retry_time, 10000, "The retry time (milliseconds) when allocator fails " "to allocate memory. No retry if this value is not greater than 0"); PADDLE_DEFINE_EXPORTED_bool( use_system_allocator, false, "Whether to use system allocator to allocate CPU and GPU memory. " "Only used for unittests."); PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth, false, "Use VirtualMemoryAutoGrowthBestFitAllocator."); // NOTE(Ruibiao): This FLAGS is just to be compatibled with // the old single-stream CUDA allocator. It will be removed // after StreamSafeCudaAllocator has been fully tested. PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator, true, "Enable StreamSafeCUDAAllocator"); PADDLE_DEFINE_EXPORTED_bool(use_cuda_managed_memory, false, "Whether to use CUDAManagedAllocator to allocate " "managed memory, only available for auto_growth " "strategy"); DECLARE_string(allocator_strategy); namespace paddle { namespace memory { namespace allocation { #ifdef PADDLE_WITH_CUDA class CUDAGraphAllocator : public Allocator, public std::enable_shared_from_this { private: class PrivateAllocation : public Allocation { public: PrivateAllocation(CUDAGraphAllocator* allocator, DecoratedAllocationPtr underlying_allocation) : Allocation( underlying_allocation->ptr(), underlying_allocation->base_ptr(), underlying_allocation->size(), underlying_allocation->place()), allocator_(allocator->shared_from_this()), underlying_allocation_(std::move(underlying_allocation)) {} private: std::shared_ptr allocator_; DecoratedAllocationPtr underlying_allocation_; }; explicit CUDAGraphAllocator(const std::shared_ptr& allocator) : underlying_allocator_(allocator) {} public: static std::shared_ptr Create( const std::shared_ptr& allocator) { return std::shared_ptr(new CUDAGraphAllocator(allocator)); } protected: phi::Allocation* AllocateImpl(size_t size) { VLOG(10) << "Allocate " << size << " for CUDA Graph"; return new PrivateAllocation(this, static_unique_ptr_cast( underlying_allocator_->Allocate(size))); } void FreeImpl(phi::Allocation* allocation) { VLOG(10) << "delete for CUDA Graph"; delete allocation; } private: std::shared_ptr underlying_allocator_; }; #endif static bool IsCUDAGraphCapturing() { #ifdef PADDLE_WITH_CUDA return UNLIKELY(platform::CUDAGraph::IsThisThreadCapturing()); #else return false; #endif } class AllocatorFacadePrivate { public: using AllocatorMap = std::map>; #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) using CUDAAllocatorMap = std::map>>; #endif explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) { strategy_ = GetAllocatorStrategy(); is_stream_safe_cuda_allocator_used_ = false; switch (strategy_) { case AllocatorStrategy::kNaiveBestFit: { InitNaiveBestFitCPUAllocator(); #ifdef PADDLE_WITH_IPU for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) { InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id)); } #endif #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) { InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id)); } InitNaiveBestFitCUDAPinnedAllocator(); #endif #ifdef PADDLE_WITH_XPU for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) { InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id)); } #endif #ifdef PADDLE_WITH_ASCEND_CL for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) { InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id)); } InitNaiveBestFitNPUPinnedAllocator(); #endif #ifdef PADDLE_WITH_MLU for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) { InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id)); } #endif #ifdef PADDLE_WITH_CUSTOM_DEVICE auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes(); for (const auto& dev_type : device_types) { for (size_t dev_id = 0; dev_id < phi::DeviceManager::GetDeviceCount(dev_type); ++dev_id) { InitNaiveBestFitCustomDeviceAllocator( platform::CustomPlace(dev_type, dev_id)); } } #endif break; } case AllocatorStrategy::kAutoGrowth: { InitNaiveBestFitCPUAllocator(); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) allow_free_idle_chunk_ = allow_free_idle_chunk; for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) { InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id), allow_free_idle_chunk_); } // Note(Ruibiao): For GPU multi-stream case without CUDA graph // capturing, the 'allocators_' map(place -> Allocator) hold the // StreamSafeCUDAAllocator releate to defaultstream (i.e., the stream // directly got from DeviceContex), while the 'cuda_allocators_' map // (place -> map(stream -> Allocator)) hold the StreamSafeCUDAAllocator // releate to non-default stream (i.e., the stream users pass in). The // default stream Allocator is built in the structure of // AllocatorFacadePrivate, while the non-default stream is build in a // manner in GetAllocator function with 'create_if_not_found = ture'. // We make special treatment for the default stream for performance // reasons. Since most Alloc calls are for default stream in // application, treating it separately can avoid lots of overhead of // acquiring default stream and applying read-write lock. if (FLAGS_use_stream_safe_cuda_allocator) { if (LIKELY(!IsCUDAGraphCapturing())) { WrapStreamSafeCUDAAllocatorForDefault(); } is_stream_safe_cuda_allocator_used_ = true; } InitNaiveBestFitCUDAPinnedAllocator(); #endif #ifdef PADDLE_WITH_ASCEND_CL for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) { InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id)); } InitNaiveBestFitNPUPinnedAllocator(); #endif #ifdef PADDLE_WITH_XPU for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) { InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id)); } #endif #ifdef PADDLE_WITH_IPU for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) { InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id)); } #endif #ifdef PADDLE_WITH_MLU for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) { InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id)); } #endif #ifdef PADDLE_WITH_CUSTOM_DEVICE auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes(); for (const auto& dev_type : device_types) { for (size_t dev_id = 0; dev_id < phi::DeviceManager::GetDeviceCount(dev_type); ++dev_id) { InitAutoGrowthCustomDeviceAllocator( platform::CustomPlace(dev_type, dev_id), allow_free_idle_chunk); } } #endif break; } case AllocatorStrategy::kThreadLocal: { InitNaiveBestFitCPUAllocator(); #ifdef PADDLE_WITH_XPU for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) { InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id)); } #endif #ifdef PADDLE_WITH_IPU for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) { InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id)); } #endif #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) { InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id)); } InitNaiveBestFitCUDAPinnedAllocator(); #endif #ifdef PADDLE_WITH_MLU for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) { InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id)); } #endif break; } default: { PADDLE_THROW(platform::errors::InvalidArgument( "Unsupported allocator strategy: %d", static_cast(strategy_))); } } InitZeroSizeAllocators(); InitSystemAllocators(); if (FLAGS_gpu_allocator_retry_time > 0) { WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time); } WrapStatAllocator(); CheckAllocThreadSafe(); #ifdef PADDLE_WITH_CUDA // No need to wrap CUDAGraphAllocator for StreamSafeCUDAAllocator if (!is_stream_safe_cuda_allocator_used_ && UNLIKELY(IsCUDAGraphCapturing())) { WrapCUDAGraphAllocator(); } #endif } inline const std::shared_ptr& GetAllocator( const platform::Place& place, size_t size) { VLOG(6) << "GetAllocator" << " " << place << " " << size; const auto& allocators = (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_ : GetAllocatorMap()) : zero_size_allocators_); auto iter = allocators.find(place); PADDLE_ENFORCE_NE(iter, allocators.end(), platform::errors::NotFound( "No allocator found for the place, %s", place)); return iter->second; } void* GetBasePtr(const std::shared_ptr& allocation) { return static_cast(allocation.get())->base_ptr(); } bool IsStreamSafeCUDAAllocatorUsed() { return is_stream_safe_cuda_allocator_used_ && LIKELY(FLAGS_use_system_allocator == false); } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) bool HasCUDAAllocator(const platform::CUDAPlace& place, gpuStream_t stream) { auto it = cuda_allocators_.find(place); if (it == cuda_allocators_.end()) { return false; } const std::map>& allocator_map = it->second; return allocator_map.find(stream) != allocator_map.end(); } const std::shared_ptr& GetAllocator( const platform::CUDAPlace& place, gpuStream_t stream, bool create_if_not_found = false) { if (LIKELY(!IsCUDAGraphCapturing())) { if (stream == GetDefaultStream(place)) { VLOG(7) << "Get Allocator by passing in a default stream"; return GetAllocator(place, /* A non-zero num to choose allocator_ */ 1); } } /* shared_lock_guard */ { std::shared_lock lock_guard( cuda_allocator_mutex_); if (LIKELY(HasCUDAAllocator(place, stream))) { return cuda_allocators_[place][stream]; } else { PADDLE_ENFORCE_NE(create_if_not_found, false, platform::errors::NotFound( "No allocator found for stream %s in place %s " "with create_if_not_found = false", stream, place)); } } /* unique_lock_guard */ { std::unique_lock lock_guard( cuda_allocator_mutex_); InitStreamSafeCUDAAllocator(place, stream); return cuda_allocators_[place][stream]; } } const std::shared_ptr GetDefaultStreamSafeCUDAAllocator(const platform::CUDAPlace& place) const { const auto iter = default_stream_safe_cuda_allocators_.find(place); PADDLE_ENFORCE_NE( iter, default_stream_safe_cuda_allocators_.end(), platform::errors::NotFound( "No StreamSafeCUDAAllocator found for the place, %s", place)); return iter->second; } gpuStream_t GetDefaultStream(const platform::CUDAPlace& place) const { const std::shared_ptr& allocator = GetDefaultStreamSafeCUDAAllocator(place); return allocator->GetDefaultStream(); } void SetDefaultStream(const platform::CUDAPlace& place, gpuStream_t stream) { const std::shared_ptr& allocator = GetDefaultStreamSafeCUDAAllocator(place); // NOTE(Ruibiao): The default stream will be set when the CUDADeviceContext // created. Normally, the DeviceContextPool is a global singleton and one // Place only correspond to one DeviceContext. However, to support // multi-stream scheduling, standalone executor creates two extra // DeviceContextPools for H2D and D2H stream in StreamAnalyzer, which make // one Place correspond to multiple DeviceContext and unexpectedly reset the // default stream in runtime. To avoid this behavior, we do not allow // changing default stream after initially setting. if (allocator->GetDefaultStream() != nullptr) { VLOG(5) << "The default stream for StreamSafeCUDAAllocator(" << allocator.get() << ") in " << place << " has been set to " << allocator->GetDefaultStream() << " before, not allow to change now."; return; } allocator->SetDefaultStream(stream); VLOG(8) << "Set default stream to " << stream << " for StreamSafeCUDAAllocator(" << allocator.get() << ") in " << place; } void RecordStream(std::shared_ptr allocation, gpuStream_t stream) { std::shared_ptr stream_safe_cuda_allocation = std::dynamic_pointer_cast(allocation); if (stream_safe_cuda_allocation != nullptr) { stream_safe_cuda_allocation->RecordStream(stream); } else { VLOG(6) << "RecordStream for a non-StreamSafeCUDAAllocation"; } } gpuStream_t GetStream( const std::shared_ptr& allocation) const { const std::shared_ptr stream_safe_cuda_allocation = std::dynamic_pointer_cast(allocation); if (stream_safe_cuda_allocation != nullptr) { return stream_safe_cuda_allocation->GetOwningStream(); } VLOG(6) << "GetStream for a non-StreamSafeCUDAAllocation"; return static_cast( platform::DeviceContextPool::Instance().Get(allocation->place())) ->stream(); } #endif private: class ZeroSizeAllocator : public Allocator { public: explicit ZeroSizeAllocator(platform::Place place) : place_(place) {} bool IsAllocThreadSafe() const override { return true; } protected: phi::Allocation* AllocateImpl(size_t size) override { return new Allocation(nullptr, 0, place_); } void FreeImpl(phi::Allocation* allocation) override { delete allocation; } private: platform::Place place_; }; const AllocatorMap& GetAllocatorMap() { return allocators_; } void InitNaiveBestFitCPUAllocator() { allocators_[platform::CPUPlace()] = std::make_shared(platform::CPUPlace()); } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) void InitNaiveBestFitCUDAPinnedAllocator() { allocators_[platform::CUDAPinnedPlace()] = std::make_shared(platform::CUDAPinnedPlace()); } void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) { allocators_[p] = std::make_shared(p); } // Create a new CUDAAllocator or CUDAManagedAllocator for the given device std::shared_ptr CreateCUDAAllocator(platform::CUDAPlace p) { if (FLAGS_use_cuda_managed_memory) { PADDLE_ENFORCE_EQ( strategy_, AllocatorStrategy::kAutoGrowth, platform::errors::InvalidArgument( "CUDA managed memory is only implemented for auto_growth " "strategy, not support %s strategy.\n" "Please use auto_growth strategy by command `export " "FLAGS_allocator_strategy=\"auto_growth\"`, or disable managed " "memory by command `export FLAGS_use_cuda_managed_memory=false`", FLAGS_allocator_strategy)); if (!platform::IsGPUManagedMemorySupported(p.device)) { PADDLE_THROW(platform::errors::Unavailable( "Failed to create CUDAManagedAllocator on GPU %d.\n\n" "You have enabled CUDA managed memory, but the gpu device does not " "support allocating managed memory.\n" "If you don't actually need to use managed memory, please disable " "it with command `export FLAGS_use_cuda_managed_memory=false`.\n" "Or you must use the gpu device that supports managed memory.", p.device)); } return std::make_shared(p); } return std::make_shared(p); } void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) { PADDLE_ENFORCE_EQ( strategy_, AllocatorStrategy::kAutoGrowth, platform::errors::Unimplemented( "Only support auto-growth strategey for StreamSafeCUDAAllocator, " "the allocator strategy %d is unsupported for multi-stream", static_cast(strategy_))); if (LIKELY(!HasCUDAAllocator(p, stream))) { VLOG(8) << "Init CUDA allocator for stream " << stream << " in place " << p; InitAutoGrowthCUDAAllocator(p, stream); WrapStreamSafeCUDAAllocator(p, stream); WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time); WrapStatAllocator(p, stream); } } void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) { #if defined(PADDLE_WITH_HIP) auto cuda_allocator = CreateCUDAAllocator(p); cuda_allocators_[p][stream] = std::make_shared( cuda_allocator, platform::GpuMinChunkSize(), 0, allow_free_idle_chunk_); #endif #if defined(PADDLE_WITH_CUDA) #if CUDA_VERSION >= 10020 CUdevice device; int val; try { PADDLE_ENFORCE_GPU_SUCCESS( paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId())); PADDLE_ENFORCE_GPU_SUCCESS( paddle::platform::dynload::cuDeviceGetAttribute( &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED, device)); } catch (...) { val = 0; } if (val > 0 && FLAGS_use_virtual_memory_auto_growth) { auto cuda_allocator = std::make_shared(p); cuda_allocators_[p][stream] = std::make_shared( cuda_allocator, platform::GpuMinChunkSize(), p); } else { auto cuda_allocator = CreateCUDAAllocator(p); cuda_allocators_[p][stream] = std::make_shared( cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk_); } #else auto cuda_allocator = CreateCUDAAllocator(p); auto alignment = platform::GpuMinChunkSize(); bool need_addr_align = true; // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda // API in that case may got cuda error(3), i.e., // cudaErrorInitializationError. And, the CUDAAllocator is only initialized // but not really used. // Here, the try-catch block is added to handle the case that // GetDeviceProperties() may failed in the multiple process(for example, in // dataloader with num_worker > 0) try { const auto& prop = platform::GetDeviceProperties(p.GetDeviceId()); need_addr_align = prop.textureAlignment < alignment; VLOG(4) << "GetDeviceProperties ok, textureAlignment: " << prop.textureAlignment << ", set need_addr_align=" << need_addr_align; } catch (...) { need_addr_align = true; VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true"; } // The address returned is aligned already, // ref: // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295 std::shared_ptr underlying_allocator{nullptr}; if (need_addr_align) { VLOG(10) << "use AlignedAllocator with alignment: " << alignment; underlying_allocator = std::make_shared(underlying_allocator, alignment); } else { VLOG(10) << "not use AlignedAllocator with alignment: " << alignment; underlying_allocator = cuda_allocator; } cuda_allocators_[p][stream] = std::make_shared( underlying_allocator, alignment, 0, allow_free_idle_chunk_); #endif #endif } // NOTE(Ruibiao): Old single-stream version, will be removed later void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, bool allow_free_idle_chunk) { #if defined(PADDLE_WITH_HIP) auto cuda_allocator = CreateCUDAAllocator(p); allocators_[p] = std::make_shared( cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk); #endif #if defined(PADDLE_WITH_CUDA) #if CUDA_VERSION >= 10020 CUdevice device; int val; try { PADDLE_ENFORCE_GPU_SUCCESS( paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId())); PADDLE_ENFORCE_GPU_SUCCESS( paddle::platform::dynload::cuDeviceGetAttribute( &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED, device)); } catch (...) { val = 0; } if (val > 0 && FLAGS_use_virtual_memory_auto_growth) { auto cuda_allocator = std::make_shared(p); allocators_[p] = std::make_shared( cuda_allocator, platform::GpuMinChunkSize(), p); } else { auto cuda_allocator = CreateCUDAAllocator(p); allocators_[p] = std::make_shared( cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk); } #else auto cuda_allocator = CreateCUDAAllocator(p); auto alignment = platform::GpuMinChunkSize(); bool need_addr_align = true; // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda // API in that case may got cuda error(3), i.e., // cudaErrorInitializationError. And, the CUDAAllocator is only initialized // but not really used. // Here, the try-catch block is added to handle the case that // GetDeviceProperties() may failed in the multiple process(for example, in // dataloader with num_worker > 0) try { const auto& prop = platform::GetDeviceProperties(p.GetDeviceId()); need_addr_align = prop.textureAlignment < alignment; VLOG(4) << "GetDeviceProperties ok, textureAlignment: " << prop.textureAlignment << ", set need_addr_align=" << need_addr_align; } catch (...) { need_addr_align = true; VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true"; } // The address returned is aligned already, // ref: // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295 std::shared_ptr underlying_allocator{nullptr}; if (need_addr_align) { VLOG(10) << "use AlignedAllocator with alignment: " << alignment; underlying_allocator = std::make_shared(underlying_allocator, alignment); } else { VLOG(10) << "not use AlignedAllocator with alignment: " << alignment; underlying_allocator = cuda_allocator; } allocators_[p] = std::make_shared( underlying_allocator, alignment, 0, allow_free_idle_chunk); #endif #endif } void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) { allocators_[p] = std::make_shared(p); } void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) { std::shared_ptr& allocator = cuda_allocators_[p][stream]; allocator = std::make_shared( allocator, p, stream, /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_); } void WrapStreamSafeCUDAAllocatorForDefault() { for (auto& pair : allocators_) { auto& place = pair.first; if (platform::is_gpu_place(place)) { std::shared_ptr&& allocator = std::make_shared( pair.second, place, /* default_stream = */ nullptr, /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_); pair.second = allocator; // NOTE(Ruibiao): A tricky implement to give StreamSafeCUDAAllocator an // ability to interact with the outside world, i.e., change default // stream from outside default_stream_safe_cuda_allocators_[place] = allocator; VLOG(8) << "WrapStreamSafeCUDAAllocator for " << place << ", allocator address = " << pair.second.get(); } } } void WrapCUDARetryAllocator(platform::CUDAPlace p, gpuStream_t stream, size_t retry_time) { PADDLE_ENFORCE_GT( retry_time, 0, platform::errors::InvalidArgument( "Retry time should be larger than 0, but got %d", retry_time)); std::shared_ptr& allocator = cuda_allocators_[p][stream]; allocator = std::make_shared(allocator, retry_time); } void WrapStatAllocator(platform::CUDAPlace p, gpuStream_t stream) { std::shared_ptr& allocator = cuda_allocators_[p][stream]; allocator = std::make_shared(allocator); } #ifdef PADDLE_WITH_CUDA void WrapCUDAGraphAllocator() { for (auto& item : allocators_) { auto& allocator = item.second; allocator = CUDAGraphAllocator::Create(allocator); } } #endif static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) { for (auto& place_pair : allocators) { for (auto& stream_pair : place_pair.second) { PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(), true, platform::errors::InvalidArgument( "Public allocators must be thread safe")); } } } #endif #ifdef PADDLE_WITH_XPU void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) { allocators_[p] = std::make_shared(p); } #endif #ifdef PADDLE_WITH_IPU void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) { allocators_[p] = std::make_shared(p); } #endif #ifdef PADDLE_WITH_MLU void InitNaiveBestFitMLUAllocator(platform::MLUPlace p) { allocators_[p] = std::make_shared(p); } #endif #ifdef PADDLE_WITH_ASCEND_CL void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) { allocators_[p] = std::make_shared(p); } void InitNaiveBestFitNPUPinnedAllocator() { allocators_[platform::NPUPinnedPlace()] = std::make_shared(); } #endif #ifdef PADDLE_WITH_CUSTOM_DEVICE void InitNaiveBestFitCustomDeviceAllocator(platform::CustomPlace p) { allocators_[p] = std::make_shared(p); } void InitAutoGrowthCustomDeviceAllocator(platform::CustomPlace p, bool allow_free_idle_chunk) { auto custom_allocator = std::make_shared(p); allocators_[p] = std::make_shared( custom_allocator, phi::DeviceManager::GetMinChunkSize(p), allow_free_idle_chunk); } #endif void InitSystemAllocators() { if (!system_allocators_.empty()) return; system_allocators_[platform::CPUPlace()] = std::make_shared(); #ifdef PADDLE_WITH_XPU int device_count = platform::GetXPUDeviceCount(); for (int i = 0; i < device_count; ++i) { platform::XPUPlace p(i); system_allocators_[p] = std::make_shared(p); } #endif #ifdef PADDLE_WITH_IPU int device_count = platform::GetIPUDeviceCount(); for (int i = 0; i < device_count; ++i) { platform::IPUPlace p(i); system_allocators_[p] = std::make_shared(p); } #endif #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) system_allocators_[platform::CUDAPinnedPlace()] = std::make_shared(); int device_count = platform::GetGPUDeviceCount(); for (int i = 0; i < device_count; ++i) { platform::CUDAPlace p(i); system_allocators_[p] = CreateCUDAAllocator(p); } #endif #ifdef PADDLE_WITH_MLU int device_count = platform::GetMLUDeviceCount(); for (int i = 0; i < device_count; ++i) { platform::MLUPlace p(i); system_allocators_[p] = std::make_shared(p); } #endif #ifdef PADDLE_WITH_CUSTOM_DEVICE auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes(); for (const auto& dev_type : device_types) { for (size_t dev_id = 0; dev_id < phi::DeviceManager::GetDeviceCount(dev_type); dev_id++) { platform::CustomPlace p(dev_type, dev_id); system_allocators_[p] = std::make_shared(p); } } #endif } void InitZeroSizeAllocators() { if (!zero_size_allocators_.empty()) return; std::vector places; places.emplace_back(platform::CPUPlace()); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) int device_count = platform::GetGPUDeviceCount(); for (int dev_id = 0; dev_id < device_count; ++dev_id) { places.emplace_back(platform::CUDAPlace(dev_id)); } places.emplace_back(platform::CUDAPinnedPlace()); #endif #ifdef PADDLE_WITH_XPU int device_count = platform::GetXPUDeviceCount(); for (int dev_id = 0; dev_id < device_count; ++dev_id) { places.emplace_back(platform::XPUPlace(dev_id)); } #endif #ifdef PADDLE_WITH_ASCEND_CL int device_count = platform::GetNPUDeviceCount(); for (int dev_id = 0; dev_id < device_count; ++dev_id) { places.emplace_back(platform::NPUPlace(dev_id)); } #endif #ifdef PADDLE_WITH_IPU int device_count = platform::GetIPUDeviceCount(); for (int dev_id = 0; dev_id < device_count; ++dev_id) { places.emplace_back(platform::IPUPlace(dev_id)); } #endif #ifdef PADDLE_WITH_MLU int device_count = platform::GetMLUDeviceCount(); for (int dev_id = 0; dev_id < device_count; ++dev_id) { places.emplace_back(platform::MLUPlace(dev_id)); } #endif #ifdef PADDLE_WITH_CUSTOM_DEVICE auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes(); for (const auto& dev_type : device_types) { for (size_t dev_id = 0; dev_id < phi::DeviceManager::GetDeviceCount(dev_type); dev_id++) { places.emplace_back(platform::CustomPlace(dev_type, dev_id)); } } #endif for (auto& p : places) { zero_size_allocators_[p] = std::make_shared(p); } } static void CheckAllocThreadSafe(const AllocatorMap& allocators) { for (auto& pair : allocators) { PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(), true, platform::errors::InvalidArgument( "Public allocators must be thread safe")); } } void CheckAllocThreadSafe() const { CheckAllocThreadSafe(allocators_); CheckAllocThreadSafe(zero_size_allocators_); CheckAllocThreadSafe(system_allocators_); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (is_stream_safe_cuda_allocator_used_) { CheckCUDAAllocThreadSafe(cuda_allocators_); } #endif } void WrapCUDARetryAllocator(size_t retry_time) { PADDLE_ENFORCE_GT( retry_time, 0, platform::errors::InvalidArgument( "Retry time should be larger than 0, but got %d", retry_time)); for (auto& pair : allocators_) { if (platform::is_gpu_place(pair.first)) { pair.second = std::make_shared(pair.second, retry_time); } } } void WrapStatAllocator() { for (auto& pair : allocators_) { pair.second = std::make_shared(pair.second); } } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) // a standalone CUDA allocator to support multi-stream GC in new executor std::map> default_stream_safe_cuda_allocators_; CUDAAllocatorMap cuda_allocators_; std::shared_timed_mutex cuda_allocator_mutex_; #endif AllocatorStrategy strategy_; AllocatorMap allocators_; static AllocatorMap zero_size_allocators_; static AllocatorMap system_allocators_; bool allow_free_idle_chunk_; bool is_stream_safe_cuda_allocator_used_; }; AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::zero_size_allocators_; AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_; // Pimpl. Make interface clean. AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {} // delete m_ may cause core dump when the destructor of python in conflict with // cpp. AllocatorFacade::~AllocatorFacade() {} AllocatorFacade& AllocatorFacade::Instance() { static AllocatorFacade* instance = new AllocatorFacade; return *instance; } AllocatorFacadePrivate* AllocatorFacade::GetPrivate() const { #ifdef PADDLE_WITH_CUDA if (UNLIKELY(IsCUDAGraphCapturing())) { auto id = platform::CUDAGraph::CapturingID(); auto iter = cuda_graph_map_.find(id); PADDLE_ENFORCE_NE( iter, cuda_graph_map_.end(), platform::errors::PermissionDenied( "No memory pool is prepared for CUDA Graph capturing.")); VLOG(10) << "Choose CUDA Graph memory pool"; return iter->second.get(); } #endif return m_; } const std::shared_ptr& AllocatorFacade::GetAllocator( const platform::Place& place) { return GetPrivate()->GetAllocator( place, /* A non-zero num to choose allocator_ */ 1); } void* AllocatorFacade::GetBasePtr( const std::shared_ptr& allocation) { PADDLE_ENFORCE_EQ(GetAllocatorStrategy(), AllocatorStrategy::kAutoGrowth, paddle::platform::errors::Unimplemented( "GetBasePtr() is only implemented for auto_growth " "strategy, not support allocator strategy: %d", static_cast(GetAllocatorStrategy()))); PADDLE_ENFORCE_EQ(platform::is_gpu_place(allocation->place()), true, paddle::platform::errors::Unimplemented( "GetBasePtr() is only implemented for CUDAPlace(), not " "suppot place: %s", allocation->place())); return GetPrivate()->GetBasePtr(allocation); } const std::shared_ptr& AllocatorFacade::GetZeroAllocator( const platform::Place& place) { return GetPrivate()->GetAllocator(place, /* zero size */ 0); } std::shared_ptr AllocatorFacade::AllocShared( const platform::Place& place, size_t size) { return std::shared_ptr(Alloc(place, size)); } AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size) { return GetPrivate()->GetAllocator(place, size)->Allocate(size); } uint64_t AllocatorFacade::Release(const platform::Place& place) { return GetPrivate() ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1) ->Release(place); } std::shared_ptr AllocatorFacade::AllocShared( const platform::Place& place, size_t size, const phi::Stream& stream) { return std::shared_ptr(Alloc(place, size, stream)); } AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size, const phi::Stream& stream) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) AllocatorFacadePrivate* m = GetPrivate(); if (!m->IsStreamSafeCUDAAllocatorUsed()) { VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!"; return Alloc(place, size); } platform::CUDAPlace p(place.GetDeviceId()); if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) { gpuStream_t s = reinterpret_cast(stream.id()); return m->GetAllocator(p, s, /* create_if_not_found = */ true) ->Allocate(size); } else { return m->GetAllocator(p, size)->Allocate(size); } #else PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU.")); #endif } bool AllocatorFacade::InSameStream( const std::shared_ptr& allocation, const phi::Stream& stream) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) gpuStream_t s = reinterpret_cast(stream.id()); return s == GetStream(allocation); #else PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU.")); #endif } bool AllocatorFacade::IsStreamSafeCUDAAllocatorUsed() { return GetPrivate()->IsStreamSafeCUDAAllocatorUsed(); } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place, gpuStream_t stream) { AllocatorFacadePrivate* m = GetPrivate(); if (!m->IsStreamSafeCUDAAllocatorUsed()) { VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!"; return Release(place); } return m->GetAllocator(place, stream)->Release(place); } void AllocatorFacade::RecordStream(std::shared_ptr allocation, gpuStream_t stream) { GetPrivate()->RecordStream(allocation, stream); } const std::shared_ptr& AllocatorFacade::GetAllocator( const platform::Place& place, gpuStream_t stream) { AllocatorFacadePrivate* m = GetPrivate(); if (!m->IsStreamSafeCUDAAllocatorUsed()) { VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!"; return GetAllocator(place); } if (platform::is_gpu_place(place) && FLAGS_use_system_allocator == false) { return m->GetAllocator(place, stream, /*create_if_not_found=*/true); } return m->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1); } gpuStream_t AllocatorFacade::GetStream( const std::shared_ptr& allocation) const { return GetPrivate()->GetStream(allocation); } void AllocatorFacade::SetDefaultStream(const platform::CUDAPlace& place, gpuStream_t stream) { if (m_->IsStreamSafeCUDAAllocatorUsed()) { m_->SetDefaultStream(place, stream); } } #ifdef PADDLE_WITH_CUDA void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) { PADDLE_ENFORCE_EQ(GetAllocatorStrategy(), AllocatorStrategy::kAutoGrowth, platform::errors::InvalidArgument( "CUDA Graph is only supported when the " "FLAGS_allocator_strategy=\"auto_growth\", but got " "FLAGS_allocator_strategy=\"%s\"", FLAGS_allocator_strategy)); auto& allocator = cuda_graph_map_[id]; PADDLE_ENFORCE_EQ( allocator.get(), nullptr, platform::errors::InvalidArgument( "The memory pool of the CUDA Graph with ID %d have been prepared.", id)); allocator.reset(new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false)); VLOG(10) << "Prepare memory pool for CUDA Graph with ID " << id; } void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) { auto iter = cuda_graph_map_.find(id); PADDLE_ENFORCE_NE(iter, cuda_graph_map_.end(), platform::errors::InvalidArgument( "Cannot find CUDA Graph with ID = %d", id)); cuda_graph_map_.erase(iter); VLOG(10) << "Remove memory pool of CUDA Graph with ID " << id; } #endif #endif } // namespace allocation } // namespace memory } // namespace paddle