/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" namespace paddle { namespace framework { class Scope; namespace proto { class OpDesc; } // namespace proto } // namespace framework } // namespace paddle namespace paddle { namespace inference { namespace tensorrt { /* * TransposeOp */ class TransposeOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { framework::OpDesc op_desc(op, nullptr); // Declare inputs auto* input = engine_->GetITensor(op_desc.Input("X")[0]); int dims = input->getDimensions().nbDims; std::vector axis = BOOST_GET_CONST(std::vector, op_desc.GetAttr("axis")); if (!engine_->with_dynamic_shape()) { for (size_t i = 1; i < axis.size(); i++) { axis[i]--; } } nvinfer1::Permutation perm; for (int i = 0; i < dims; i++) { int j = engine_->with_dynamic_shape() ? i : i + 1; perm.order[i] = axis[j]; } // Permutation is valid if it has nbDims unique values from range [0, // nbDims-1] auto is_valid_permutation = [&](int dims, const nvinfer1::Permutation& permutation) { std::bitset found; for (int i = 0; i < dims; ++i) { const int x = permutation.order[i]; if ((x < 0) || (x >= dims) || found[x]) return false; // Out of bounds or duplicate found.set(x); } return true; }; PADDLE_ENFORCE_EQ(is_valid_permutation(dims, perm), true, platform::errors::InvalidArgument( "Invalid permutation dimensions for trt transpose op " "converter: duplicate or out of bound.")); auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input); layer->setFirstTranspose(perm); auto output_name = op_desc.Output("Out")[0]; RreplenishLayerAndOutput(layer, "transpose", {output_name}, test_mode); } }; } // namespace tensorrt } // namespace inference } // namespace paddle REGISTER_TRT_OP_CONVERTER(transpose, TransposeOpConverter);