# Distributed Training on Kubernetes We introduced how to create a PaddlePaddle Job with a single node on Kuberentes in the previous document. In this article, we will introduce how to create a PaddlePaddle job with multiple nodes on Kubernetes cluster. ## Overall Architecture Before creating a training job, the users need to slice the training data and deploy the Python scripts along with it into the distributed file system (We can use the different type of Kuberentes Volumes to mount different distributed file systems). Before training starts, The program will copy the training data into the Container and also save the models at the same path during training. The global architecture is as follows: ![PaddlePaddle on Kubernetes Architecture](src/k8s-paddle-arch.png) The above figure describes a distributed training architecture which contains 3 nodes, each Pod mounts a folder of the distributed file system to save training data and models by Kubernetes Volume. Kubernetes created 3 Pods for this training phase and scheduled these on 3 nodes, each Pod has a PaddlePaddle container. After the containers car created, PaddlePaddle starts up the communication between PServer and Trainer and read training data for this training job. As the description above, we can start up a PaddlePaddle distributed training job on a Kubernetes ready cluster with the following steps: 1. [Build PaddlePaddle Docker Image](#Build a Docker Image) 1. [Split training data and upload to the distributed file system](#Upload Training Data) 1. [Edit a YAML file and create a Kubernetes Job](#Create a Job) 1. [Check the output](#Check The Output) We will introduce these steps as follows: ### Build a Docker Image Training docker image needs to package the paddle pserver and paddle trainer runtimes, as well as two more processes before we can kick off the training: - Copying the training data into container. - Generating the initialization arguments for `Paddle PServer` and `Paddle Training` processes. Since the paddlepaddle official docker image already has the runtimes we need, we'll take it as the base image and pack some additional scripts for the processes mentioned above to build our training image. for more detail, please find from the following link: - https://github.com/PaddlePaddle/Paddle/tree/develop/doc/v2/howto/cluster/multi_cluster/src/k8s_train/Dockerfile ```bash $ cd doc/howto/usage/k8s/src/k8s_train $ docker build -t [YOUR_REPO]/paddle:mypaddle . ``` And then upload the new Docker Image to a Docker hub: ```bash docker push [YOUR_REPO]/paddle:mypaddle ``` **[NOTE]**, in the above command arguments, `[YOUR_REPO]` represents your Docker repository, you need to use your repository instead of it. We will replace it with your respository name to represent the Docker Image which built in this step. ### Prepare Training Data We can download and split the training job by creating a Kubernetes Job, or custom your image by editing [k8s_train](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/v2/howto/cluster/multi_cluster/src/k8s_train). Before creating a Job, we need to bind a [persistenVolumeClaim](https://kubernetes.io/docs/user-guide/persistent-volumes) by the different type of the different file system, the generated dataset would be saved on this volume. ```yaml apiVersion: batch/v1 kind: Job metadata: name: paddle-data spec: template: metadata: name: pi spec: hostNetwork: true containers: - name: paddle-data image: paddlepaddle/paddle-tutorial:k8s_data imagePullPolicy: Always volumeMounts: - mountPath: "/mnt" name: nfs env: - name: OUT_DIR value: /home/work/mfs/paddle-cluster-job - name: SPLIT_COUNT value: "3" volumes: - name: nfs persistentVolumeClaim: claimName: mfs restartPolicy: Never ``` Create the Job with the following command: ```bash > kubectl create -f xxx.yaml ``` If created successfully, you can see some information like this: ```base [root@paddle-kubernetes-node0 nfsdir]$ tree -d . `-- paddle-cluster-job |-- 0 | `-- data |-- 1 | `-- data |-- 2 | `-- data |-- output |-- quick_start ``` The `paddle-cluster-job` above is the job name for this training job; we need 3 PaddlePaddle training nodes and save the split training data in `paddle-cluster-job` path, the folder `0`, `1` and `2` represents the `training_id` on each node, `quick_start` folder is used to store training data, `output` folder is used to store the models and logs. ### Create a Job Kubernetes allow users to create objects with YAML files, and we can use a command-line tool to create it. The Job YAML file describes that which Docker Image would be used in this training job, how much nodes would be created, what's the startup arguments of `Paddle PServer/Trainer` process and what's the type of Volumes. You can find the details of the YAML filed in [Kubernetes Job API](http://kubernetes.io/docs/api-reference/batch/v1/definitions/#_v1_job). The following is an example for this training job: ```yaml apiVersion: batch/v1 kind: Job metadata: name: paddle-cluster-job spec: parallelism: 3 completions: 3 template: metadata: name: paddle-cluster-job spec: volumes: - name: jobpath hostPath: path: /home/work/mfs containers: - name: trainer image: [YOUR_REPO]/paddle:mypaddle command: ["bin/bash", "-c", "/root/start.sh"] env: - name: JOB_NAME value: paddle-cluster-job - name: JOB_PATH value: /home/jobpath - name: JOB_NAMESPACE value: default - name: TRAIN_CONFIG_DIR value: recommendation - name: CONF_PADDLE_NIC value: eth0 - name: CONF_PADDLE_PORT value: "7164" - name: CONF_PADDLE_PORTS_NUM value: "2" - name: CONF_PADDLE_PORTS_NUM_SPARSE value: "2" - name: CONF_PADDLE_GRADIENT_NUM value: "3" volumeMounts: - name: jobpath mountPath: /home/jobpath restartPolicy: Never ``` In the above YAML file: - `metadata.name`, The job name. - `parallelism`, Whether the Kubernetes Job would create `parallelism` Pods at the same time. - `completions`, The Job would become the success status only when the number of successful Pod(the exit code is 0) is equal to `completions`. - `volumeMounts`, the name field `jobpath` is a key, the `mountPath` field represents the path in the container, and we can define the `jobpath` in `volumes` filed, use `hostPath` to configure the host path we want to mount. - `env`, the environment variables in the Container, we pass some startup arguments by this approach, some details are as following: - JOB_PATH:the mount path in the container - JOB_NAME:the job name - TRAIN_CONFIG_DIR:the job path in the container, we can find the training data path by combine with JOB_NAME. - CONF_PADDLE_NIC: the argument `--nics` of `Paddle PServer` process, the network device name. - CONF_PADDLE_PORT: the argument `--port` of `Paddle PServer` process. - CONF_PADDLE_PORTS_NUM: the argument `--ports_num` of `Paddle PServer`, the port number for dense prameter update. - CONF_PADDLE_PORTS_NUM_SPARSE:the argument `--ports_num_for_sparse` of `Paddle PServer`, the port number for sparse parameter update. - CONF_PADDLE_GRADIENT_NUM:the number of training node, the argument `--num_gradient_servers` of `Paddle PServer` and `Paddle Trainer`. You can find some details information at [here] (http://www.paddlepaddle.org/docs/develop/documentation/zh/howto/usage/cmd_parameter/detail_introduction_cn.html)。 We can use the command-line tool of Kubernetes to create a Job when we finish the YAML file: ```bash kubectl create -f job.yaml ``` Upon successful creation, Kubernetes would create 3 Pods as PaddlePaddle training node, pull the Docker image and begin to train. ### Checkout the Output At the process of training, we can check the logs and the output models which is stored in the `output` folder. **NOTE**, `node_0`, `node_1` and `node_2` represent the `trainer_id` of the PaddlePaddle training job rather than the node id of Kubernetes. ```bash [root@paddle-kubernetes-node0 output]# tree -d . ├── node_0 │   ├── server.log │   └── train.log ├── node_1 │   ├── server.log │   └── train.log ├── node_2 ...... ├── pass-00002 │   ├── done │   ├── ___embedding_0__.w0 │   ├── ___embedding_1__.w0 ...... ``` We can checkout the status of each training Pod by viewing the logs: ```bash [root@paddle-kubernetes-node0 node_0]# cat train.log I1116 09:10:17.123121 50 Util.cpp:155] commandline: /usr/local/bin/../opt/paddle/bin/paddle_trainer --nics=eth0 --port=7164 --ports_num=2 --comment=paddle_process_by_paddle --pservers=192.168.129.66,192.168.223.143,192.168.129.71 --ports_num_for_sparse=2 --config=./trainer_config.py --trainer_count=4 --num_passes=10 --use_gpu=0 --log_period=50 --dot_period=10 --saving_period=1 --local=0 --trainer_id=0 --save_dir=/home/jobpath/paddle-cluster-job/output I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions done. [WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config. [INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating] [INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__square_error_cost_0__] I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process I1116 09:10:17.681543 50 GradientMachine.cpp:134] Initing parameters.. I1116 09:10:18.012390 50 GradientMachine.cpp:141] Init parameters done. I1116 09:10:18.018641 50 ParameterClient2.cpp:122] pserver 0 192.168.129.66:7164 I1116 09:10:18.018950 50 ParameterClient2.cpp:122] pserver 1 192.168.129.66:7165 I1116 09:10:18.019069 50 ParameterClient2.cpp:122] pserver 2 192.168.223.143:7164 I1116 09:10:18.019492 50 ParameterClient2.cpp:122] pserver 3 192.168.223.143:7165 I1116 09:10:18.019716 50 ParameterClient2.cpp:122] pserver 4 192.168.129.71:7164 I1116 09:10:18.019836 50 ParameterClient2.cpp:122] pserver 5 192.168.129.71:7165 ``` ## Some Additional Details ### Using Environment Variables Usually we use the environment varialbes to configurate the PaddlePaddle Job which runs in Kubernetes, `start_paddle.py` provides a start up script to convert the environment variable to the start up arguments of PaddlePaddle process: ```bash API = "/api/v1/namespaces/" JOBSELECTOR = "labelSelector=job-name=" JOB_PATH = os.getenv("JOB_PATH") + "/" + os.getenv("JOB_NAME") JOB_PATH_OUTPUT = JOB_PATH + "/output" JOBNAME = os.getenv("JOB_NAME") NAMESPACE = os.getenv("JOB_NAMESPACE") PADDLE_NIC = os.getenv("CONF_PADDLE_NIC") PADDLE_PORT = os.getenv("CONF_PADDLE_PORT") PADDLE_PORTS_NUM = os.getenv("CONF_PADDLE_PORTS_NUM") PADDLE_PORTS_NUM_SPARSE = os.getenv("CONF_PADDLE_PORTS_NUM_SPARSE") PADDLE_SERVER_NUM = os.getenv("CONF_PADDLE_GRADIENT_NUM") ``` ### Communication between Pods At the begin of `start_paddle.py`, it would initializes and parses the arguments. ```python parser = argparse.ArgumentParser(prog="start_paddle.py", description='simple tool for k8s') args, train_args_list = parser.parse_known_args() train_args = refine_unknown_args(train_args_list) train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2])) podlist = getPodList() ``` And then query the status of all the other Pods of this Job by the function `getPodList()`, and fetch `triner_id` by the function `getIdMap(podlist)` if all the Pods status is `RUNNING`. ```python podlist = getPodList() # need to wait until all pods are running while not isPodAllRunning(podlist): time.sleep(10) podlist = getPodList() idMap = getIdMap(podlist) ``` **NOTE**: `getPodList()` would prefetch all the Pods in the current namespace, if some Pods are alreay running, it may cause some error. We will use [statfulesets](https://kubernetes.io/docs/concepts/abstractions/controllers/statefulsets) instead of Kubernetes Pod or Replicaset in the future. The function `getIdMap(podlist)` fetches IPs addresses of `podlist` and then sort them to generate `trainer_id`. ```python def getIdMap(podlist): ''' generate tainer_id by ip ''' ips = [] for pod in podlist["items"]: ips.append(pod["status"]["podIP"]) ips.sort() idMap = {} for i in range(len(ips)): idMap[ips[i]] = i return idMap ``` After getting the `idMap`, we can generate the arguments of `Paddle PServer` and `Paddle Trainer` so that we can start up them by `startPaddle(idMap, train_args_dict)`. ### Create Job The main goal of `startPaddle` is generating the arguments of `Paddle PServer` and `Paddle Trainer` processes. Take `Paddle Trainer` as an example, we parse the environment variable and then get `PADDLE_NIC`, `PADDLE_PORT`, `PADDLE_PORTS_NUM` and etc..., finally find `trainerId` from `idMap` according to its IP address. ```python program = 'paddle train' args = " --nics=" + PADDLE_NIC args += " --port=" + str(PADDLE_PORT) args += " --ports_num=" + str(PADDLE_PORTS_NUM) args += " --comment=" + "paddle_process_by_paddle" ip_string = "" for ip in idMap.keys(): ip_string += (ip + ",") ip_string = ip_string.rstrip(",") args += " --pservers=" + ip_string args_ext = "" for key, value in train_args_dict.items(): args_ext += (' --' + key + '=' + value) localIP = socket.gethostbyname(socket.gethostname()) trainerId = idMap[localIP] args += " " + args_ext + " --trainer_id=" + \ str(trainerId) + " --save_dir=" + JOB_PATH_OUTPUT ```