# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle.distributed.fleet.proto import distributed_strategy_pb2 from paddle.fluid.framework import Variable, set_flags, core import google.protobuf.text_format def get_msg_dict(msg): res_dict = {} fields = msg.DESCRIPTOR.fields for f in fields: res_dict[f.name] = getattr(msg, f.name) return res_dict def assign_configs_value(msg, config): fields = msg.DESCRIPTOR.fields for key in config: for f in fields: if key == f.name: if f.label == 3: getattr(msg, f.name).extend(config[f.name]) elif f.label == 1 or f.label == 2: setattr(msg, f.name, config[f.name]) def check_configs_key(msg, config, field_name): key_list = msg.DESCRIPTOR.fields_by_name.keys() for key in config: assert key in key_list, "key:{} not in {}".format(key, field_name) class DistributedJobInfo(object): """ DistributedJobInfo will serialize all distributed training information Just for inner use: 1) debug 2) replicate experiments """ def __init__(self): self.job_info = distributed_strategy_pb2.DistributedJobInfo() def _set_worker_num(self, worker_num): self.job_info.worker_num = worker_num def _set_server_num(self, server_num): self.job_info.server_num = server_num def _set_worker_ips(self, worker_ips): self.job_info.worker_ips.extend(worker_ips) def _set_server_endpoints(self, server_endpoints): self.job_info.server_endpoints.extend(server_endpoints) def _set_origin_startup(self, origin_startup_prog): self.job_info.origin_startup = str(origin_startup_prog) def _set_origin_main(self, origin_main_prog): self.job_info.origin_main = str(origin_main_prog) def _distributed_main(self, distributed_main_prog): self.job_info.distributed_main = str(distributed_main_prog) def _optimizer_name(self, optimizer_name): self.job_info.optimizer_name = optimizer_name def _set_distributed_strategy(self, dist_strategy): self.job_info.strategy = dist_strategy class DistributedStrategy(object): __lock_attr = False def __init__(self): """ DistributedStrategy is the main configuration entry for distributed training of Paddle. All of the distributed training configurations can be configured in DistributedStrategy, such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS), asynchronous update parameter server(ASGD), etc. DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file Users who run local training usually configure BuildStrategy and ExecutionStrategy, and DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy """ self.strategy = distributed_strategy_pb2.DistributedStrategy() self.__lock_attr = True def __setattr__(self, key, value): if self.__lock_attr and not hasattr(self, key): raise TypeError("%s is not a attribute of %s" % (key, self.__class__.__name__)) object.__setattr__(self, key, value) def save_to_prototxt(self, output): """ Serialize current DistributedStrategy to string and save to output file Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.dgc = True strategy.recompute = True strategy.recompute_configs = {"checkpoint": ["x"]} strategy.save_to_prototxt("dist_strategy.prototxt") """ with open(output, "w") as fout: fout.write(str(self.strategy)) def load_from_prototxt(self, pb_file): """ Load from prototxt file for DistributedStrategy initialization Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.load_from_prototxt("dist_strategy.protoxt") """ with open(pb_file, 'r') as f: self.strategy = google.protobuf.text_format.Merge( str(f.read()), self.strategy) @property def execution_strategy(self): """ Configure ExecutionStrategy for DistributedStrategy Examples: .. code-block:: python exe_strategy = paddle.fluid.ExecutionStrategy() exe_strategy.num_threads = 10 exe_strategy.num_iteration_per_drop_scope = 10 exe_strategy.num_iteration_per_run = 10 strategy = paddle.distributed.fleet.DistributedStrategy() strategy.execution_strategy = exe_strategy """ execution_strategy = paddle.fluid.ExecutionStrategy() fields = self.strategy.execution_strategy.DESCRIPTOR.fields for f in fields: setattr(execution_strategy, f.name, getattr(self.strategy.execution_strategy, f.name)) return execution_strategy @execution_strategy.setter def execution_strategy(self, strategy): fields = self.strategy.execution_strategy.DESCRIPTOR.fields for f in fields: setattr(self.strategy.execution_strategy, f.name, getattr(strategy, f.name)) @property def build_strategy(self): """ Configure BuildStrategy for DistributedStrategy Note that the properties of BuildStrategy are valid in DistributedStrategy only if the property is non-distributed strategy. Examples: .. code-block:: python build_strategy = paddle.fluid.BuildStrategy() build_strategy.enable_sequential_execution = True build_strategy.fuse_elewise_add_act_ops = True build_strategy.fuse_bn_act_ops = True build_strategy.enable_auto_fusion = True build_strategy.fuse_relu_depthwise_conv = True build_strategy.fuse_broadcast_ops = True build_strategy.fuse_all_optimizer_ops = True build_strategy.enable_inplace = True strategy = paddle.distributed.fleet.DistributedStrategy() strategy.build_strategy = build_strategy """ build_strategy = paddle.fluid.BuildStrategy() fields = self.strategy.build_strategy.DESCRIPTOR.fields for f in fields: setattr(build_strategy, f.name, getattr(self.strategy.build_strategy, f.name)) return build_strategy @build_strategy.setter def build_strategy(self, strategy): fields = self.strategy.build_strategy.DESCRIPTOR.fields for f in fields: if f.label == 1 or f.label == 2: # optional and required field setattr(self.strategy.build_strategy, f.name, getattr(strategy, f.name)) elif f.label == 3: # repeated field getattr(self.strategy.build_strategy, f.name).extend(getattr(strategy, f.name)) @property def a_sync(self): """ Indicating whether we are using asynchronous stocastic gradient descent updates for training. This property is valid when we are using parameter server training, which is implied by setting approperate RoleMaker Default value: True Examples: .. code-block:: python import paddle.distributed.fleet as fleet role_maker = fleet.PaddleCloudRoleMaker() fleet.init(role_maker) strategy = fleet.DistributedStrategy() strategy.a_sync = True # by default this is True # code block for defining loss and local optimizer # sgd = fleet.distributed_optimizer(optimizer, strategy) """ return self.strategy.a_sync @a_sync.setter def a_sync(self, flag): if isinstance(flag, bool): self.strategy.a_sync = flag self.a_sync_configs = {"k_steps": 0} else: raise ValueError( "The type of `flag` is invalid, expected type is bool, but received %s". format(type(flag))) @property def a_sync_configs(self): """ Set a_sync update configurations. In general, asynchronous parameter server training has serveral configurable settings that can be configured through a dict. **Notes**: **Detailed arguments for a_sync_configs** **k_step**: number of local optimization updates before communication **max_merge_var_num**: maximum number of merged gradients before communication **send_queue_size**: a buffer size of worker communication **independent_recv_thread**: if we are using independent recv thread for communication **thread_pool_size**: number of thread pool **send_wait_times**: waiting time for sending gradients **runtime_split_send_recv**: if we are using Tensor split for send and recv during runtime Examples: .. code-block:: python import paddle.distributed.fleet as fleet role_maker = fleet.PaddleCloudRoleMaker() fleet.init(role_maker) strategy = fleet.DistributedStrategy() strategy.a_sync = True # by default this is True configs = {"k_step": 10000, "send_queue_size": 32} strategy.a_sync_configs = configs # code block for defining loss and local optimizer # sgd = fleet.distributed_optimizer(optimizer, strategy) """ return get_msg_dict(self.strategy.a_sync_configs) @a_sync_configs.setter def a_sync_configs(self, configs): check_configs_key(self.strategy.a_sync_configs, configs, "a_sync_configs") assign_configs_value(self.strategy.a_sync_configs, configs) @property def amp(self): """ Indicating whether we are using automatic mixed precision training Default Value: False Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.amp = True # by default this is false """ return self.strategy.amp @amp.setter def amp(self, flag): if isinstance(flag, bool): self.strategy.amp = flag else: print("WARNING: amp should have value of bool type") @property def amp_configs(self): """ Set automatic mixed precision training configurations. In general, amp has serveral configurable settings that can be configured through a dict. **Notes**: **init_loss_scaling(float)**: The initial loss scaling factor. Default 32768. **use_dynamic_loss_scaling(bool)**: Whether to use dynamic loss scaling. Default True. **incr_every_n_steps(int)**: Increases loss scaling every n consecutive steps with finite gradients. Default 1000. **decr_every_n_nan_or_inf(int)**: Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2. **incr_ratio(float)**: The multiplier to use when increasing the loss scaling. Default 2.0. **decr_ratio(float)**: The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5. **custom_white_list(list[str])**: Users' custom white list which always execution fp16. **custom_black_list(list[str])**: Users' custom black list which forbidden execution fp16. Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.amp = True strategy.amp_configs = { "init_loss_scaling": 32768, "custom_white_list": ['conv2d']} """ return get_msg_dict(self.strategy.amp_configs) @amp_configs.setter def amp_configs(self, configs): check_configs_key(self.strategy.amp_configs, configs, "amp_configs") assign_configs_value(self.strategy.amp_configs, configs) @property def recompute(self): """ Indicating whether we are using forward recomputation for memory optimization Default value: False Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.recompute = True # suppose x and y are names of checkpoint tensors for recomputation strategy.recompute_configs = {"checkpoints": ["x", "y"]} """ return self.strategy.recompute @property def sync_nccl_allreduce(self): """ Indicating whether we are using synchronized all reduce in each communication thread We note that system overhead is usually lower when sync_nccl_allreduce = True Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.sync_nccl_allreduce = True """ return self.strategy.sync_nccl_allreduce @sync_nccl_allreduce.setter def sync_nccl_allreduce(self, flag): if isinstance(flag, bool): self.strategy.sync_nccl_allreduce = flag else: print("WARNING: sync_nccl_allreduce should have value of bool type") @property def use_hierarchical_allreduce(self): """ Indicating whether we are using hierarchical allreduce in collective communication Hierarchical allreduce often does allreduce within a certain node group and then do allreduce among the leaders of each group Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.use_hierarchical_allreduce = True """ return self.strategy.use_hierarchical_allreduce @use_hierarchical_allreduce.setter def use_hierarchical_allreduce(self, flag): if isinstance(flag, bool): self.strategy.use_hierarchical_allreduce = flag else: print( "WARNING: use_hierarchical_allreduce should have value of bool type" ) @property def hierarchical_allreduce_inter_nranks(self): """ Number of ranks for low level node groups in hierarchical allreduce Default value: number of GPU cards on each single GPU machine Example: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.hierarchical_allreduce_inter_nranks = 8 """ return self.strategy.hierarchical_allreduce_inter_nranks @hierarchical_allreduce_inter_nranks.setter def hierarchical_allreduce_inter_nranks(self, value): if isinstance(value, int): self.strategy.hierarchical_allreduce_inter_nranks = value else: print( "WARNING: hierarchical_allreduce_inter_nranks should have value of int type" ) @property def sync_batch_norm(self): """ Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes. Default value: False Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.sync_batch_norm = True """ return self.strategy.sync_batch_norm @sync_batch_norm.setter def sync_batch_norm(self, flag): if isinstance(flag, bool): self.strategy.sync_batch_norm = flag else: print("WARNING: sync_batch_norm should have value of bool type") @property def fuse_all_reduce_ops(self): """ Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training Default value: True Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.fuse_all_reduce_ops = False """ return self.strategy.fuse_all_reduce_ops @fuse_all_reduce_ops.setter def fuse_all_reduce_ops(self, flag): if isinstance(flag, bool): self.strategy.fuse_all_reduce_ops = flag else: print("WARNING: fuse_all_reduce_ops should have value of bool type") @property def fuse_grad_size_in_MB(self): """ Specifying the size of gradient to fuse in Mega-Bytes Default value: 32 Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.fuse_grad_size_in_MB = 50 """ return self.strategy.fuse_grad_size_in_MB @fuse_grad_size_in_MB.setter def fuse_grad_size_in_MB(self, value): if isinstance(value, int): self.strategy.fuse_grad_size_in_MB = value else: print("WARNING: fuse_grad_size_in_MB should have value of int type") @property def _fuse_grad_size_in_TFLOPS(self): return self.strategy.fuse_grad_size_in_TFLOPS @_fuse_grad_size_in_TFLOPS.setter def _fuse_grad_size_in_TFLOPS(self, value): if isinstance(value, float): self.strategy.fuse_grad_size_in_TFLOPS = value else: print( "WARNING: fuse_grad_size_in_TFLOPS should have value of float type" ) @property def nccl_comm_num(self): """ Specifying the number of NCCL communicator Default value: 1 Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.nccl_comm_num = 2 """ return self.strategy.nccl_comm_num @nccl_comm_num.setter def nccl_comm_num(self, value): if isinstance(value, int): self.strategy.nccl_comm_num = value else: print("WARNING: nccl_comm_num should have value of int type") @recompute.setter def recompute(self, flag): if isinstance(flag, bool): self.strategy.recompute = flag else: print("WARNING: recompute should have value of bool type") @property def recompute_configs(self): """ Set recompute configurations. In general, the recompute strategy of current implementation should have some manually assign checkpoints Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.recompute = True strategy.recompute_configs = {"checkpionts": ["x", "y"]} """ return get_msg_dict(self.strategy.recompute_configs) @recompute_configs.setter def recompute_configs(self, configs): check_configs_key(self.strategy.recompute_configs, configs, "checkpoint_configs") assign_configs_value(self.strategy.recompute_configs, configs) @property def pipeline(self): """ Indicating whether we are using pipeline parallelism for distributed training. Current implementation mainly focus on single GPU machine pipeline parallelism and data parallelism across GPU machine. The pipeline information is indicated through device_guard information in user-defined program. Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.pipeline = True """ return self.strategy.pipeline @pipeline.setter def pipeline(self, flag): if isinstance(flag, bool): self.strategy.pipeline = flag else: print("WARNING: pipeline should have value of bool type") @property def pipeline_configs(self): """ Set pipeline parallelism configurations. In pipeline parallelism, different parts of neural networks are running on different GPUS. There are Tensor queue buffer between each pair of neighborhood GPUS that are responsible for synchronizing hidden Tensor results between GPUs. Pipeline parallelism consists of serveral producer-consumer style hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup pipeline parallelism is to make the size of Tensor in Tensor queue smaller, so that we will have a faster producer for downstream consumers. **Notes**: **Detailed arguments for pipeline_configs** **micro_batch**: the number of small batches in each user defined batch Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.pipeline = True strategy.pipeline_configs = {"micro_batch": 12} """ return get_msg_dict(self.strategy.pipeline_configs) @pipeline_configs.setter def pipeline_configs(self, configs): check_configs_key(self.strategy.pipeline_configs, configs, "pipeline_configs") assign_configs_value(self.strategy.pipeline_configs, configs) @property def localsgd(self): """ Indicating whether we are using Local SGD training. For more details, please refer to [Don't Use Large Mini-Batches, Use Local SGD](https://arxiv.org/pdf/1808.07217.pdf), Default Value: False Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.localsgd = True # by default this is false """ return self.strategy.localsgd @localsgd.setter def localsgd(self, flag): if isinstance(flag, bool): self.strategy.localsgd = flag else: print("WARNING: localsgd should have value of bool type") @property def localsgd_configs(self): """ Set LocalSGD training configurations. LocalSGD has a configurable setting that can be configured through a dict. **Notes**: **k_steps(int)**: The local steps for training before parameter synchronization. Default 1. If strategy.auto is set True, the local steps will be calculated automatically during training. The algorithm is referenced in this paper: [Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD](https://arxiv.org/pdf/1810.08313.pdf). In this case, k_steps indicates the first local steps which is suggested setting to 1. Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.localsgd = True strategy.localsgd_configs = {"k_steps": 4} """ return get_msg_dict(self.strategy.localsgd_configs) @localsgd_configs.setter def localsgd_configs(self, configs): check_configs_key(self.strategy.localsgd_configs, configs, "localsgd_configs") assign_configs_value(self.strategy.localsgd_configs, configs) @property def dgc(self): """ Indicating whether we are using Deep Gradient Compression training. For more details, please refer to [Deep Gradient Compression](https://arxiv.org/abs/1712.01887). Default Value: False Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.dgc = True # by default this is false """ return self.strategy.dgc @dgc.setter def dgc(self, flag): if isinstance(flag, bool): self.strategy.dgc = flag else: print("WARNING: dgc should have value of bool type") @property def dgc_configs(self): """ Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable settings that can be configured through a dict. **Notes**: **rampup_begin_step(int)**: The beginning step from which gradient compression is implemented. Default 0. **rampup_step(int)**: Time steps used in sparsity warm-up periods. Default is 1. For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array ends, it will use 0.999 then and after. **sparsity(list[float])**: Get top important element from gradient tensor, the ratio is (1 - sparsity). Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important element will be transmitted. Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.dgc = True strategy.dgc_configs = {"rampup_begin_step": 1252} """ return get_msg_dict(self.strategy.dgc_configs) @dgc_configs.setter def dgc_configs(self, configs): check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs") assign_configs_value(self.strategy.dgc_configs, configs) @property def gradient_merge(self): """ Gradient Merge, also called as Gradient Accumulation, is a strategy for large batch training. With this strategy, model parameter will not be updated until user-defined steps. For each step, the forward network and the backward network will run to calculate the gradient of model parameters. For every k step, the optimization network will run, applying a specific optimization method (such as SGD, Adam) to model parameters. Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.gradient_merge = True strategy.gradient_merge_configs = {"k_steps": 4, "avg": True} """ return self.strategy.gradient_merge @gradient_merge.setter def gradient_merge(self, flag): if isinstance(flag, bool): self.strategy.gradient_merge = flag else: print("WARNING: gradient_merge should have value of bool type") @property def gradient_merge_configs(self): """ the key-value configs of distribute_strategy Keys: k_steps (int): the update period of the parameters avg (bool): whether to average the gradients of each mini-batch, the default value is `True` Example: import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.gradient_merge = True strategy.gradient_merge_configs = {"k_steps": 4, "avg": True} """ return get_msg_dict(self.strategy.gradient_merge_configs) @gradient_merge_configs.setter def gradient_merge_configs(self, configs): check_configs_key(self.strategy.gradient_merge_configs, configs, "gradient_configs") assign_configs_value(self.strategy.gradient_merge_configs, configs) @property def lars(self): """ Set lars configurations. lars is used to deal with the convergence problems when the global batch size is larger than 8k. For more details, please refer to [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888). Default Value: False Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.lars = True # by default this is false """ return self.strategy.lars @lars.setter def lars(self, flag): if isinstance(flag, bool): self.strategy.lars = flag else: print("WARNING: lars should have value of bool type") @property def lars_configs(self): """ Set Lars training configurations. **Notes**: **lars_coeff (float)**: trust ratio in lars formula. **lars_weight_decay** (float): weight decay coefficient in lars formula. **epsilon (float)**: argument is used to avoid potential devision-by-zero when compute the local lr; **exclude_from_weight_decay ([string])**: is a list of name strings of layers which will be exclude from weight decay in lars formula. Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.lars = True strategy.lars_configs = { "lars_coeff": 0.01, "lars_weight_decay": 0.0005, "epsilon": 0, "exclude_from_weight_decay": ['batch_norm', '.b_0'] } """ return get_msg_dict(self.strategy.lars_configs) @lars_configs.setter def lars_configs(self, configs): check_configs_key(self.strategy.lars_configs, configs, "lars_configs") assign_configs_value(self.strategy.lars_configs, configs) @property def lamb(self): """ Set lamb configurations. lamb is used to deal with the convergence problems for large batch size training, specially for attention-related model like BERT. For more details, please refer to [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962). Default Value: False Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.lamb = True # by default this is false """ return self.strategy.lamb @lamb.setter def lamb(self, flag): if isinstance(flag, bool): self.strategy.lamb = flag else: print("WARNING: lamb should have value of bool type") @property def lamb_configs(self): """ Set Lars training configurations. **Notes**: **lamb_weight_decay** (float): weight decay coefficient in lamb formula. **exclude_from_weight_decay ([string])**: is a list of name strings of layers which will be exclude from weight decay in lamb formula. Examples: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() strategy.lamb = True strategy.lamb_configs = { 'lamb_weight_decay': 0.01, 'exclude_from_weight_decay': [], } """ return get_msg_dict(self.strategy.lamb_configs) @lamb_configs.setter def lamb_configs(self, configs): check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs") assign_configs_value(self.strategy.lamb_configs, configs) @property def elastic(self): return self.strategy.elastic @elastic.setter def elastic(self, flag): if isinstance(flag, bool): self.strategy.elastic = flag else: print("WARNING: elastic should have value of bool type") @property def auto(self): return self.strategy.auto @auto.setter def auto(self, flag): if isinstance(flag, bool): self.strategy.auto = flag else: print("WARNING: auto should have value of bool type") @property def cudnn_exhaustive_search(self): return self.strategy.cudnn_exhaustive_search @cudnn_exhaustive_search.setter def cudnn_exhaustive_search(self, flag): if isinstance(flag, bool): self.strategy.cudnn_exhaustive_search = flag else: print( "WARNING: cudnn_exhaustive_search should have value of bool type" ) @property def conv_workspace_size_limit(self): return self.strategy.conv_workspace_size_limit @conv_workspace_size_limit.setter def conv_workspace_size_limit(self, value): if isinstance(value, int): self.strategy.conv_workspace_size_limit = value else: print( "WARNING: conv_workspace_size_limit should have value of int type" ) @property def cudnn_batchnorm_spatial_persistent(self): return self.strategy.cudnn_batchnorm_spatial_persistent @cudnn_batchnorm_spatial_persistent.setter def cudnn_batchnorm_spatial_persistent(self, flag): if isinstance(flag, bool): self.strategy.cudnn_batchnorm_spatial_persistent = flag else: print( "WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type" ) def _enable_env(self): strategy = self.strategy keys = [ "FLAGS_cudnn_batchnorm_spatial_persistent", "FLAGS_conv_workspace_size_limit", "FLAGS_cudnn_exhaustive_search", "FLAGS_sync_nccl_allreduce", "FLAGS_fuse_parameter_memory_size", "FLAGS_fuse_parameter_groups_size", ] values = [ bool(strategy.cudnn_batchnorm_spatial_persistent), int(strategy.conv_workspace_size_limit), bool(strategy.cudnn_exhaustive_search), bool(strategy.sync_nccl_allreduce), int(strategy.fuse_grad_size_in_MB), int(strategy.fuse_grad_size_in_TFLOPS), ] for i, key in enumerate(keys): if core.globals().is_public(key): core.globals()[key] = values[i] def __repr__(self): fields = self.strategy.DESCRIPTOR.fields for f in fields: print("{}: {}".format(f.name, f.default_value)) return str(self.strategy)