# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle.fluid as fluid from paddle.fluid.incubate.fleet.collective import CollectiveOptimizer, DistributedStrategy class CollectiveOptimizerTest(unittest.TestCase): def test_ds_as_None(self): optimizer = fluid.optimizer.AdamOptimizer() dist_optimizer = CollectiveOptimizer(optimizer, strategy=None) def test_recompute_checkpoints(self): optimizer = fluid.optimizer.AdamOptimizer() dist_strategy = DistributedStrategy() dist_strategy.forward_recompute = True dist_strategy.recompute_checkpoints = "NoneListTest" self.assertRaises(ValueError, CollectiveOptimizer, optimizer, dist_strategy) dist_strategy.recompute_checkpoints = [] dist_optimizer = CollectiveOptimizer(optimizer, dist_strategy) self.assertRaises(ValueError, dist_optimizer.minimize, None) def test_recompute_strategy(self): optimizer = fluid.optimizer.AdamOptimizer() optimizer = fluid.optimizer.RecomputeOptimizer(optimizer) dist_strategy = DistributedStrategy() dist_strategy.forward_recompute = True dist_strategy.recompute_checkpoints = ["Test"] dist_optimizer = CollectiveOptimizer(optimizer, strategy=dist_strategy) self.assertRaises(ValueError, dist_optimizer.minimize, None) def test_amp_strategy(self): optimizer = fluid.optimizer.AdamOptimizer() optimizer = fluid.contrib.mixed_precision.decorate( optimizer, init_loss_scaling=1.0, use_dynamic_loss_scaling=True) dist_strategy = DistributedStrategy() dist_strategy.use_amp = True dist_optimizer = CollectiveOptimizer(optimizer, strategy=dist_strategy) self.assertRaises(ValueError, dist_optimizer.minimize, None) if __name__ == '__main__': unittest.main()