# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from optparse import OptionParser from py_paddle import swig_paddle, DataProviderConverter from paddle.trainer.PyDataProvider2 import integer_value_sequence from paddle.trainer.config_parser import parse_config """ Usage: run following command to show help message. python predict.py -h """ class SentimentPrediction(): def __init__(self, train_conf, dict_file, model_dir=None, label_file = None): """ train_conf: trainer configure. dict_file: word dictionary file name. model_dir: directory of model. """ self.train_conf = train_conf self.dict_file = dict_file self.word_dict = {} self.dict_dim = self.load_dict() self.model_dir = model_dir if model_dir is None: self.model_dir = os.path.dirname(train_conf) self.label = None if label_file is not None: self.load_label(label_file) conf = parse_config(train_conf, "is_predict=1") self.network = swig_paddle.GradientMachine.createFromConfigProto(conf.model_config) self.network.loadParameters(self.model_dir) slots = [integer_value_sequence(self.dict_dim)] self.converter = DataProviderConverter(slots) def load_dict(self): """ Load dictionary from self.dict_file. """ for line_count, line in enumerate(open(self.dict_file, 'r')): self.word_dict[line.strip().split('\t')[0]] = line_count return len(self.word_dict) def load_label(self, label_file): """ Load label. """ self.label={} for v in open(label_file, 'r'): self.label[int(v.split('\t')[1])] = v.split('\t')[0] def get_data(self, data_file): """ Get input data of paddle format. """ with open(data_file, 'r') as fdata: for line in fdata: words = line.strip().split() word_slot = [self.word_dict[w] for w in words if w in self.word_dict] if not word_slot: print "all words are not in dictionary: %s", line continue yield [word_slot] def predict(self, data_file): """ data_file: file name of input data. """ input = self.converter(self.get_data(data_file)) output = self.network.forwardTest(input) prob = output[0]["value"] lab = np.argsort(-prob) if self.label is None: print("%s: predicting label is %d" % (data_file, lab[0][0])) else: print("%s: predicting label is %s" % (data_file, self.label[lab[0][0]])) def option_parser(): usage = "python predict.py -n config -w model_dir -d dictionary -i input_file " parser = OptionParser(usage="usage: %s [options]" % usage) parser.add_option("-n", "--tconf", action="store", dest="train_conf", help="network config") parser.add_option("-d", "--dict", action="store", dest="dict_file",help="dictionary file") parser.add_option("-b", "--label", action="store", dest="label", default=None, help="dictionary file") parser.add_option("-i", "--data", action="store", dest="data", help="data file to predict") parser.add_option("-w", "--model", action="store", dest="model_path", default=None, help="model path") return parser.parse_args() def main(): options, args = option_parser() train_conf = options.train_conf data = options.data dict_file = options.dict_file model_path = options.model_path label = options.label swig_paddle.initPaddle("--use_gpu=0") predict = SentimentPrediction(train_conf, dict_file, model_path, label) predict.predict(data) if __name__ == '__main__': main()