// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #ifdef __NVCC__ #include "cub/cub.cuh" #endif #ifdef __HIPCC__ #include namespace cub = hipcub; #endif #include "paddle/fluid/framework/array.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/platform/cuda_device_function.h" #include "paddle/fluid/platform/fast_divmod.h" // Reduce split or not, Whether to use ReduceHigherDim #define REDUCE_SPLIT_BOUNDARY 512 #define REDUCE_VEC_SIZE 4 namespace paddle { namespace operators { namespace detail { // Post processing function for sum, max, min, prod, any template struct IdentityFunctor { HOSTDEVICE explicit inline IdentityFunctor(int n) {} HOSTDEVICE inline Ty operator()(const Tx& x) const { return static_cast(x); } }; // Post processing function for mean template struct DivideFunctor { HOSTDEVICE explicit inline DivideFunctor(int n) : n_inv((T)(1.0 / n)) {} HOSTDEVICE inline T operator()(const T& x) const { return x * n_inv; } private: T n_inv; }; static inline int GetLastPow2(int n) { n |= (n >> 1); n |= (n >> 2); n |= (n >> 4); n |= (n >> 8); n |= (n >> 16); return std::max(1, n - (n >> 1)); } static inline int64_t AlignUp(int64_t a, int64_t b) { return (a + b - 1) / b; } // get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny static inline std::vector GetDimStrides(const std::vector& dims, const std::vector& idx) { int n = static_cast(idx.size()); if (n == 0) return std::vector(); std::vector strides(n); strides.back() = 1; for (int i = n - 2; i >= 0; --i) { strides[i] = strides[i + 1] * dims[idx[i + 1]]; } return strides; } #ifdef __HIPCC__ constexpr int kMaxThread = 256; constexpr int kWarpSize = 64; #else constexpr int kMaxThread = 128; constexpr int kWarpSize = 32; #endif // get blockDim for reduceLastDim and reduceAny static inline int GetBlockDim(int block_dim) { return block_dim >= kMaxThread ? kMaxThread : GetLastPow2(block_dim); } // check reduce rand is valid static inline void CheckReduceRank(int reduce_rank, int rank) { if (rank % 2 == 0) { PADDLE_ENFORCE_EQ(reduce_rank, rank / 2, platform::errors::InvalidArgument( "ReduceOp: invalid reduce rank. When rank = %d, " "reduce_rank must be %d, but got %d.", rank, rank / 2, reduce_rank)); } else { auto lower_rank = (rank - 1) / 2; auto upper_rank = (rank + 1) / 2; PADDLE_ENFORCE_EQ( reduce_rank == lower_rank || reduce_rank == upper_rank, true, platform::errors::InvalidArgument( "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank " "must be %d or %d, but got %d.", rank, lower_rank, upper_rank, reduce_rank)); } } // convert dims from vector to array template static inline paddle::framework::Array VectorToArray( const VectorLikeType& vec) { PADDLE_ENFORCE_LE(vec.size(), ElementCount, platform::errors::InvalidArgument( "Cub reduce Array: size not match. Received " "vec.size() %d > ElementCount %d.", vec.size(), ElementCount)); size_t n = static_cast(vec.size()); paddle::framework::Array ret; for (size_t i = 0; i < n; ++i) { ret[i] = vec[i]; } return ret; } } // namespace detail using Tensor = framework::Tensor; constexpr int kMaxRank = framework::DDim::kMaxRank; enum ReduceType { kReduceAll = 0x00, // when reduce_rank == x_rank kReduceLastDim = 0x01, // when reduce_dim[0] == x_dim.size() - 1; kReduceHigherDim = 0x02, // ReduceFirstDim or reduceSecondDim kReduceAny = 0x03, // when reduce_dim.size() > 1 }; struct IndexCalculator { IndexCalculator(int dim, const std::vector& cal_dims, const std::vector& cal_strides, const std::vector& full_strides) : dim(dim) { dims = detail::VectorToArray(cal_dims); strides = detail::VectorToArray(full_strides); std::vector cal_divmoders; // fast divmod for (auto i : cal_strides) { cal_divmoders.push_back(platform::FastDivMod(i)); } divmoders = detail::VectorToArray(cal_divmoders); } __device__ inline int Get(int offset) const { int index = 0; #pragma unroll for (int i = 0; i < kMaxRank; ++i) { if (i == dim) { break; } auto divmod = divmoders[i].Divmod(offset); index += (divmod.val[0] * strides[dims[i]]); offset = divmod.val[1]; } return index; } int dim; framework::Array dims; framework::Array strides; framework::Array divmoders; }; // reduce config template struct ReduceConfig { ReduceConfig(const std::vector& origin_reduce_dims, const std::vector& origin_x_dim) : reduce_dims_origin(origin_reduce_dims), x_dim(origin_x_dim) {} // get the parameters of reduceKernel void Run() { // step1: update the reduce_dim left_dim and x_dim SetReduceDim(); // step2: get the strides of dim for reduceAny and reduceLastDim SetStrides(); // step3: get the type of reduce SetReduceType(); // step4: set the block and grid for launch kernel SetBlockDim(); } // when should_reduce_again is true, we need malloc temp space for temp data void SetOutputData(Ty* y_data, const platform::Place& place, framework::Tensor* tmp) { if (should_reduce_again) { output_data = tmp->mutable_data( framework::make_ddim( {static_cast(left_num * grid.z * grid.y * sizeof(Ty))}), place); } else { output_data = y_data; } } private: // set reduce_dim, left_dim and update x_dim // eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1] // --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1] void SetReduceDim() { std::set reduce_set; for (auto e : reduce_dims_origin) { auto pos = e >= 0 ? e : e + x_dim.size(); reduce_set.insert(pos); } std::vector reduce_dim_temp(reduce_set.begin(), reduce_set.end()); std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end()); // update reduce_dim and x_dim std::vector x_new_dim; reduce_dim.push_back(reduce_dim_temp[0]); x_new_dim.push_back(x_dim[0]); int idx_reduce = 1; int num = 0; if (reduce_dim_temp.size() > 1) { for (int i = 1; i < x_dim.size(); i++) { if ((idx_reduce < reduce_dim_temp.size()) && (i == reduce_dim_temp[idx_reduce])) { int result = reduce_dim_temp[idx_reduce] - reduce_dim[reduce_dim.size() - 1]; bool is_equal = ((result - num) == 1); if (is_equal) { x_new_dim[x_new_dim.size() - 1] *= x_dim[i]; num++; } else { reduce_dim.push_back(reduce_dim_temp[idx_reduce] - num); x_new_dim.push_back(x_dim[i]); } idx_reduce++; } else { x_new_dim.push_back(x_dim[i]); } } } else { x_new_dim = x_dim; } // update x_dim x_dim = x_new_dim; std::vector().swap(x_new_dim); std::vector reduce_dim_new; int is_reduced = 0; for (auto e : reduce_dim) { is_reduced |= 1 << e; } std::vector().swap(reduce_dim); for (int i = 0; i < x_dim.size(); i++) { if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) { x_new_dim.push_back(x_dim[i]); if ((is_reduced >> i) & 1) reduce_dim_new.push_back(x_new_dim.size() - 1); } else { x_new_dim[x_new_dim.size() - 1] *= x_dim[i]; } } x_dim = x_new_dim; reduce_dim = reduce_dim_new; int x_rank = static_cast(x_dim.size()); std::set left_set; for (int i = 0; i < x_rank; ++i) { left_set.insert(i); } for (auto e : reduce_dim) { left_set.erase(e); } left_dim.assign(left_set.begin(), left_set.end()); // if the last dim gets involved in reduction reduce_lastdim = (reduce_dim.back() == x_dim.size() - 1); } // set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny // eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1] // --SetStrides--> x_strides= [6,1], reduce_strides = [1], // left_strides = [1] void SetStrides() { std::vector idx_dim; for (int i = 0; i < x_dim.size(); i++) { idx_dim.push_back(i); } x_strides = detail::GetDimStrides(x_dim, idx_dim); reduce_strides = detail::GetDimStrides(x_dim, reduce_dim); left_strides = detail::GetDimStrides(x_dim, left_dim); reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]]; left_num = 1; if (left_dim.size()) { left_num = left_strides[0] * x_dim[left_dim[0]]; } } // get the reduceType // eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim // x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim // x_dim = [8] reduce_dim = [0] --> reduceAll // x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny void SetReduceType() { int rank = x_dim.size(); int reduce_rank = reduce_dim.size(); bool is_large_enough = (reduce_num > REDUCE_SPLIT_BOUNDARY / 2) || (left_num > REDUCE_SPLIT_BOUNDARY); if (rank == reduce_rank) { reduce_type = static_cast(ReduceType::kReduceAll); } else if (rank == 2 && reduce_rank == 1 && reduce_dim[0] == 1) { reduce_type = static_cast(ReduceType::kReduceLastDim); } else if (reduce_rank == 1 && ((rank == 2 && is_large_enough) || rank != 2)) { // ReduceFirstDim and reduceSecondDim reduce_type = static_cast(ReduceType::kReduceHigherDim); } else { reduce_type = static_cast(ReduceType::kReduceAny); } } void SetBlockDimForReduceAny(dim3* block_dim, dim3* grid_dim) { constexpr int min_reduce_num_per_thread = 16; constexpr int max_reduce_num_per_thread = 256; constexpr int max_num_threads = detail::kMaxThread; // set block size. // 1. If reduce_lastdim == true, all the threads whose threadIdx.y are same // will process the reduction for one output. // The number of output for one block is blockDim.y; // 2. If reduce_lastdim == false, different threadIdx.x will process // different reduction and gets the output separately. If it is // necessary, it should reduce in block y. // The number of output for one block is blockDim.x; int block_x, block_y; int grid_num, reduce_num_per_thread; if (reduce_lastdim) { block_x = detail::GetBlockDim(reduce_num); block_y = detail::GetBlockDim(left_num); block_dim->x = block_x; block_dim->y = std::min(block_y, static_cast(max_num_threads / block_dim->x)); grid_num = detail::AlignUp(left_num, block_dim->y); reduce_num_per_thread = detail::AlignUp(reduce_num, block_dim->x); } else { block_x = detail::GetBlockDim(left_num); block_y = detail::GetBlockDim(reduce_num); block_dim->x = std::min(block_x, 32); block_dim->y = std::min(block_y, static_cast(max_num_threads / block_dim->x)); block_dim->x = std::min(block_x, static_cast(max_num_threads / block_dim->y)); grid_num = detail::AlignUp(left_num, block_dim->x); reduce_num_per_thread = detail::AlignUp(reduce_num, block_dim->y); } int device_id = platform::GetCurrentDeviceId(); int max_mp = platform::GetCUDAMultiProcessors(device_id); int max_threads_per_mp = platform::GetCUDAMaxThreadsPerMultiProcessor(device_id); int max_threads = max_threads_per_mp * max_mp; int num_threads = block_dim->x * block_dim->y; int max_num_blocks = max_threads / num_threads; // set grid size. // Whether to set grid.y larger than 1, there are 3 following rules: // 1. The number that each thread process should no less than // min_reduce_num_per_threadbut no more than max_reduce_num_per_thread; // 2. It should maximize the utilization of SM. // So we choose the minimum between input_split_num_1 and input_split_num_3 // to make each thread process as mush data as possible. Meanwhile, // the number cannot be larger than max_reduce_num_per_thread, so we // choose the maximum between the result above and input_split_num_2. int input_split_num_1 = detail::AlignUp(reduce_num_per_thread, min_reduce_num_per_thread); int input_split_num_2 = detail::AlignUp(reduce_num_per_thread, max_reduce_num_per_thread); int input_split_num_3 = detail::AlignUp(max_num_blocks, grid_num); grid_dim->x = grid_num; grid_dim->y = std::max(std::min(input_split_num_1, input_split_num_3), input_split_num_2); // if grid.y > 1, we need launch reduce kernel again. if (grid_dim->y > 1) { should_reduce_again = true; } } // set block and grid for launch kernel // for ReduceHigherDim: if block is enough -> splite reduce_num // else init block(32, 1) grid(block_num, 1) // for others: block(block_num, 1) , grid(left_num, 1) void SetBlockDim() { // init int block_num = detail::GetBlockDim(reduce_num); should_reduce_again = false; dim3 block_dim(block_num, 1); dim3 grid_dim(left_num, 1); blocking_size = reduce_num; if (reduce_type == ReduceType::kReduceHigherDim) { int last_dim_num = x_dim.back(); // update left_num int grid_z = left_num / last_dim_num; left_num = last_dim_num; block_dim.z = 1; grid_dim.z = grid_z; int device_id = platform::GetCurrentDeviceId(); int max_mp = platform::GetCUDAMultiProcessors(device_id); int max_threads_per_mp = platform::GetCUDAMaxThreadsPerMultiProcessor(device_id); int max_threads = max_threads_per_mp * max_mp; // init int num_block = (max_threads / left_num); if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) { blocking_size = detail::GetLastPow2(reduce_num / num_block); if (blocking_size <= 1) { blocking_size = detail::GetLastPow2(sqrt(reduce_num)); } else if (blocking_size * 2 < reduce_num) { blocking_size *= 2; } should_reduce_again = true; block_dim.x = 32; block_dim.y = 1; grid_dim.x = (left_num + block_dim.x - 1) / block_dim.x; grid_dim.y = (reduce_num + blocking_size - 1) / blocking_size; } else { block_dim.x = 32; block_dim.y = 1; blocking_size = reduce_num; grid_dim.x = (left_num + block_dim.x - 1) / block_dim.x; grid_dim.y = 1; } } else { SetBlockDimForReduceAny(&block_dim, &grid_dim); } block = block_dim; grid = grid_dim; } public: std::vector reduce_dims_origin; std::vector reduce_dim; std::vector x_dim; std::vector left_dim; std::vector x_strides; std::vector left_strides; std::vector reduce_strides; int reduce_type; int reduce_num; int left_num; int blocking_size; bool should_reduce_again; bool reduce_lastdim; Ty* output_data; dim3 block; dim3 grid; }; static __device__ int SharedMemoryIndex(int index) { return (threadIdx.y + index) * blockDim.x + threadIdx.x; } template static __device__ T WarpReduce(T val, ReduceOp reducer) { unsigned mask = 0u; CREATE_SHFL_MASK(mask, true); for (int stride = detail::kWarpSize / 2; stride > 0; stride >>= 1) { T temp = paddle::platform::CudaShuffleDownSync(mask, val, stride); val = reducer(val, temp); } return val; } /* e.g. * |---------block---------| * |warp0|warp1|warp2|warp3| * |0~31|32~63|64~95|96~127| ---->blockDim.x = 128 * \|/ \|/ \|/ \|/ ---->1. First WarpReduce in each warp * res0 res1 res2 res3 ---->2. Store result of each warp to shared memory * \ \ / / ---->3. Load the result above from shared memory * res to warp0 and process the second WarpReduce */ template static __device__ T BlockXReduce(T val, ReduceOp reducer) { using detail::kWarpSize; __shared__ T shared[2 * kWarpSize]; int block_dim_x = blockDim.x; if (blockDim.x > kWarpSize) { block_dim_x = blockDim.x / kWarpSize; int lane = threadIdx.x % kWarpSize; int tid = threadIdx.y * blockDim.x + threadIdx.x; int wid = tid / kWarpSize; int bid = threadIdx.y; val = WarpReduce(val, reducer); if (lane == 0) { shared[wid] = val; } __syncthreads(); val = shared[bid * block_dim_x + lane]; } unsigned mask = 0u; CREATE_SHFL_MASK(mask, true); for (int stride = 1; stride < block_dim_x; stride <<= 1) { T temp = paddle::platform::CudaShuffleDownSync(mask, val, stride); val = reducer(val, temp); } return val; } template static __device__ T BlockYReduce(T val, ReduceOp reducer) { __shared__ T shared_memory[detail::kMaxThread]; shared_memory[SharedMemoryIndex(0)] = val; for (int stride = blockDim.y / 2; stride > 0; stride >>= 1) { __syncthreads(); if (threadIdx.y < stride && threadIdx.y + stride < blockDim.y) { T temp = shared_memory[SharedMemoryIndex(stride)]; val = reducer(val, temp); } shared_memory[SharedMemoryIndex(0)] = val; } return val; } // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this // function will be used // eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1 // if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx / 32 // else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32 template __device__ void ReduceHigherDim(const Tx* x, Ty* y, ReduceOp reducer, TransformOp transformer, Ty init, int reduce_num, int left_num, int block_size) { int idx = blockIdx.x * blockDim.x + threadIdx.x; int idy = blockIdx.y * block_size; Ty reduce_var = init; if (idx < left_num) { int loop = reduce_num - idy; loop = loop > block_size ? block_size : loop; for (int iy = 0; iy < loop; iy++) { int id = (idy + iy) * left_num + idx + blockIdx.z * reduce_num * left_num; reduce_var = reducer(reduce_var, static_cast(transformer(x[id]))); } y[idx + blockIdx.y * left_num + blockIdx.z * gridDim.y * left_num] = reduce_var; } } // when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or // when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this // function will be used template __device__ void ReduceAny(const Tx* x, Ty* y, ReduceOp reducer, TransformOp transformer, Ty init, int reduce_num, int left_num, bool reduce_lastdim, ReduceIndexCal reduce_index_calculator, LeftIndexCal left_index_calculator) { int input_idx, left_idx, stride; // the last dim gets involved in reduction if (reduce_lastdim) { input_idx = blockIdx.y * blockDim.x + threadIdx.x; left_idx = blockIdx.x * blockDim.y + threadIdx.y; stride = gridDim.y * blockDim.x; } else { input_idx = blockIdx.y * blockDim.y + threadIdx.y; left_idx = blockIdx.x * blockDim.x + threadIdx.x; stride = gridDim.y * blockDim.y; } // calculate the offset, means the addr where each thread really start. int input_offset = left_index_calculator(left_idx); const Tx* input = x + input_offset; Ty reduce_var = init; // 1. reduce for each thread if (left_idx < left_num) { // load REDUCE_VEC_SIZE data once, and then compute Tx input_reg[REDUCE_VEC_SIZE]; int bound = reduce_num - (REDUCE_VEC_SIZE - 1) * stride; while (input_idx < bound) { #pragma unroll for (int i = 0; i < REDUCE_VEC_SIZE; ++i) { int reduce_idx = input_idx + i * stride; int idx_x = reduce_index_calculator(reduce_idx); input_reg[i] = input[idx_x]; } #pragma unroll for (int i = 0; i < REDUCE_VEC_SIZE; ++i) { reduce_var = reducer(reduce_var, transformer(input_reg[i])); } input_idx += REDUCE_VEC_SIZE * stride; } // deal with the remain part int input_idx_tmp = input_idx; #pragma unroll for (int i = 0; i < REDUCE_VEC_SIZE; ++i) { if (input_idx >= reduce_num) { break; } int reduce_idx = input_idx; int idx_x = reduce_index_calculator(reduce_idx); input_reg[i] = input[idx_x]; input_idx += stride; } input_idx = input_idx_tmp; #pragma unroll for (int i = 0; i < REDUCE_VEC_SIZE; ++i) { if (input_idx >= reduce_num) { break; } reduce_var = reducer(reduce_var, transformer(input_reg[i])); input_idx += stride; } } // 2. reduce in block y if (!reduce_lastdim && blockDim.y > 1) { reduce_var = BlockYReduce(reduce_var, reducer); } __syncthreads(); if (reduce_lastdim) { // 3. reduce in block x reduce_var = BlockXReduce(reduce_var, reducer); if (left_idx < left_num && threadIdx.x == 0) { y[blockIdx.y * left_num + left_idx] = reduce_var; } } else { if (left_idx < left_num && threadIdx.y == 0) { y[blockIdx.y * left_num + left_idx] = reduce_var; } } } // module function designed for global function template __device__ void ReduceModule(const Tx* x, Ty* y, ReduceOp reducer, TransformOp transformer, Ty init, int reduce_num, int left_num, int blocking_size, int reduce_type, bool reduce_lastdim, const IndexCalculator& reduce_index_calculator, const IndexCalculator& left_index_calculator) { if (reduce_type == ReduceType::kReduceLastDim) { ReduceAny( x, y, reducer, transformer, init, reduce_num, left_num, reduce_lastdim, [&](int idx) { return idx; }, [&](int idx) { return idx * reduce_num; }); // reduce_rank == 1 && reduce_dim[0] != x_dim.size() - 1 } else if (reduce_type == ReduceType::kReduceHigherDim) { ReduceHigherDim( x, y, reducer, transformer, init, reduce_num, left_num, blocking_size); // reduce_rank >= 2 } else { ReduceAny( x, y, reducer, transformer, init, reduce_num, left_num, reduce_lastdim, [&](int idx) { return reduce_index_calculator.Get(idx); }, [&](int idx) { return left_index_calculator.Get(idx); }); } } template __global__ void ReduceKernelFunction(const Tx* x, Ty* y, ReduceOp reducer, TransformOp transformer, Ty init, int reduce_num, int left_num, int blocking_size, int reduce_type, bool reduce_lastdim, IndexCalculator reduce_index_calculator, IndexCalculator left_index_calculator) { ReduceModule( x, y, reducer, transformer, init, reduce_num, left_num, blocking_size, reduce_type, reduce_lastdim, reduce_index_calculator, left_index_calculator); } template static void LaunchReduceKernel(const Tx* x_data, Ty* y_data, const ReduceOp& reducer, Ty init, gpuStream_t stream, ReduceConfig config) { using TransformOp = typename ReduceOp::Transformer; int reduce_rank = config.reduce_strides.size(); int left_rank = config.left_strides.size(); auto reduce_index_calculator = IndexCalculator( reduce_rank, config.reduce_dim, config.reduce_strides, config.x_strides); auto left_index_calculator = IndexCalculator( left_rank, config.left_dim, config.left_strides, config.x_strides); ReduceKernelFunction<<>>( x_data, config.output_data, reducer, TransformOp(config.reduce_num), init, config.reduce_num, config.left_num, config.blocking_size, config.reduce_type, config.reduce_lastdim, reduce_index_calculator, left_index_calculator); if (config.should_reduce_again) { dim3 block; dim3 grid; if (config.reduce_lastdim) { block = dim3(32, 1, 1); grid = dim3(detail::AlignUp(config.left_num, 32), 1, 1); } else { block = dim3(config.block.x, 1, 1); grid = dim3(config.grid.x, 1, config.grid.z); } ReduceKernelFunction><<>>( config.output_data, y_data, reducer, detail::IdentityFunctor(config.grid.y), init, config.grid.y, config.left_num, config.grid.y, ReduceType::kReduceHigherDim, config.reduce_lastdim, reduce_index_calculator, left_index_calculator); } } template class ReduceOp> void TensorReduceFunctorImpl(const framework::Tensor& x, framework::Tensor* y, std::vector origin_reduce_dims, gpuStream_t stream) { auto x_dim = framework::vectorize(x.dims()); auto config = ReduceConfig(origin_reduce_dims, x_dim); config.Run(); // get the parameters of LaunchReduceKernel // after config.run() // SetOutputData for ReduceHigherDim when should_reduce_again is true, // temp_output should be stored temp_data in output_data space or stored in // y_data; framework::Tensor tmp; auto x_data = x.data(); auto y_data = y->mutable_data(x.place()); if (config.reduce_num == 1) { auto out_dims = y->dims(); framework::TensorCopy(x, y->place(), y); y->Resize(out_dims); return; } config.SetOutputData(y_data, x.place(), &tmp); using TransformOp = typename ReduceOp::Transformer; auto reducer = ReduceOp(); // launch CUB::Reduce if (config.reduce_type == static_cast(ReduceType::kReduceAll)) { cub::TransformInputIterator trans_x( x_data, TransformOp(config.reduce_num)); size_t temp_storage_bytes = 0; cub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, trans_x, y_data, config.reduce_num, reducer, reducer.initial(), stream); framework::Tensor tmp; auto* temp_storage = tmp.mutable_data( framework::make_ddim({static_cast(temp_storage_bytes)}), x.place()); cub::DeviceReduce::Reduce(temp_storage, temp_storage_bytes, trans_x, y_data, config.reduce_num, reducer, reducer.initial(), stream); return; } LaunchReduceKernel>( x_data, y_data, reducer, reducer.initial(), stream, config); } template class ReduceOp> struct TensorReduceFunc { const framework::Tensor& x; framework::Tensor* y; std::vector origin_reduce_dims; gpuStream_t stream; TensorReduceFunc(const framework::Tensor& x, framework::Tensor* y, std::vector origin_reduce_dims, gpuStream_t stream) : x(x), y(y), origin_reduce_dims(origin_reduce_dims), stream(stream) {} template void apply() const { TensorReduceFunctorImpl(x, y, origin_reduce_dims, stream); } }; } // namespace operators } // namespace paddle