/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/platform/cuda_device_function.h" #include "paddle/fluid/platform/fast_divmod.h" #ifdef __HIPCC__ #define ELEMENTWISE_BLOCK_SIZE 256 #else #define ELEMENTWISE_BLOCK_SIZE 512 #endif namespace paddle { namespace operators { enum ElementwiseType { kUnary = 1, kBinary = 2, kTernary = 3 }; /* * According to NVIDIA, if number of threads per block is 64/128/256/512, * cuda performs better. And number of blocks should be greater (at least * 2x~4x) than number of SMs. Hence, SM count is took into account within * this function to determine the right number of threads per block. */ inline int GetThreadsConfig(const platform::CUDADeviceContext &ctx, int64_t numel, int vec_size) { int threads = ELEMENTWISE_BLOCK_SIZE; int sm_count = ctx.GetSMCount(); int active_threads_num = numel / vec_size; if (active_threads_num / (sm_count << 1) < ELEMENTWISE_BLOCK_SIZE) { // Round up threads number into an exponential multiple of 2, while number // of acitve blocks is about twice of SM, to acquire better performance. threads = platform::RoundToPowerOfTwo(active_threads_num / (sm_count << 1)); } else if (active_threads_num / (sm_count << 2) < ELEMENTWISE_BLOCK_SIZE) { // Round up threads number into an exponential multiple of 2, while number // of acitve blocks is about 4 times of SM, to acquire better performance. threads = platform::RoundToPowerOfTwo(active_threads_num / (sm_count << 2)); } // Number of threads per block shall be larger than 64. return std::max(64, threads); } template int GetVectorizedSizeForIO(const std::vector &ins, const std::vector &outs) { int vec_size = 4; for (auto iter = ins.begin(); iter != ins.end(); ++iter) { vec_size = std::min(vec_size, platform::GetVectorizedSize((*iter)->data())); } for (auto iter = outs.begin(); iter != outs.end(); ++iter) { vec_size = std::min( vec_size, platform::GetVectorizedSize((*iter)->data())); } return vec_size; } template struct ElementwiseDataWrapper { using InVecType = platform::CudaAlignedVector; using OutVecType = platform::CudaAlignedVector; const InT *__restrict__ in_data[ET]; OutT *out_data; uint32_t scalar_cal_offset; HOSTDEVICE ElementwiseDataWrapper( const std::vector &ins, std::vector *outs, uint32_t scalar_cal_offset) : scalar_cal_offset(scalar_cal_offset) { #pragma unroll for (int i = 0; i < ET; ++i) { in_data[i] = ins[i]->data(); } out_data = (*outs)[0]->data(); } inline __device__ void LoadVectorizedData(InVecType vec_args[], int tid) { #pragma unroll for (int i = 0; i < ET; ++i) { const InVecType *in_vec_data = reinterpret_cast(in_data[i]); vec_args[i] = in_vec_data[tid]; } } inline __device__ void LoadScalarizedData(InT args[], int tid) { #pragma unroll for (int i = 0; i < ET; ++i) { args[i] = in_data[i][tid + scalar_cal_offset]; } } inline __device__ void StoreVectorizedData(OutVecType res, int tid) { OutVecType *out_vec = reinterpret_cast(out_data); out_vec[tid] = res; } inline __device__ void StoreScalarizedData(OutT res, int tid) { out_data[tid + scalar_cal_offset] = res; } }; template __device__ inline void VectorizedKernelImpl(ElementwiseWrapper data, Functor func, int tid) { using InVecType = platform::CudaAlignedVector; using OutVecType = platform::CudaAlignedVector; InVecType ins_vec[ET]; OutVecType out_vec; InT *ins_ptr[ET]; InT ins[ET]; #pragma unroll for (int i = 0; i < ET; ++i) { ins_ptr[i] = reinterpret_cast(&(ins_vec[i])); } // load data.LoadVectorizedData(ins_vec, tid); // compute #pragma unroll for (int i = 0; i < VecSize; ++i) { #pragma unroll for (int j = 0; j < ET; ++j) { ins[j] = ins_ptr[j][i]; } out_vec.val[i] = func(ins); } // store data.StoreVectorizedData(out_vec, tid); } template __device__ inline void ScalarKernelImpl(ElementwiseWrapper data, Functor func, int tid) { InT ins[ET]; OutT out; // load data.LoadScalarizedData(ins, tid); // compute out = func(ins); // store data.StoreScalarizedData(out, tid); } template __global__ void VectorizedKernel(ElementwiseWrapper data, int main_tid, int tail_tid, Functor func) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < main_tid) { VectorizedKernelImpl( data, func, tid); } if (tid < tail_tid) { ScalarKernelImpl(data, func, tid); } } template __global__ void ScalarKernel(ElementwiseWrapper data, int numel, Functor func) { int tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < numel) { ScalarKernelImpl(data, func, tid); } } template void LaunchSameDimsElementwiseCudaKernel( const platform::CUDADeviceContext &ctx, const std::vector &ins, std::vector *outs, Functor func) { // calculate the max vec_size for all ins and outs auto numel = ins[0]->numel(); int vec_size = GetVectorizedSizeForIO(ins, *outs); int block_size = GetThreadsConfig(ctx, numel, vec_size); int grid_size = ((numel + vec_size - 1) / vec_size + block_size - 1) / block_size; int main_tid = numel / vec_size; int tail_tid = numel % vec_size; uint32_t vec_len = main_tid * vec_size; // cuda kernel auto stream = ctx.stream(); switch (vec_size) { case 4: { auto data_wrapper = ElementwiseDataWrapper(ins, outs, vec_len); VectorizedKernel<<>>( data_wrapper, main_tid, tail_tid, func); break; } case 2: { auto data_wrapper = ElementwiseDataWrapper(ins, outs, vec_len); VectorizedKernel<<>>( data_wrapper, main_tid, tail_tid, func); break; } case 1: { auto data_wrapper = ElementwiseDataWrapper(ins, outs, 0); ScalarKernel<<>>(data_wrapper, numel, func); break; } default: { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported vectorized size: %d !", vec_size)); break; } } } } // namespace operators } // namespace paddle