/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/pten/core/kernel_registry.h" #include "paddle/pten/kernels/cpu/utils.h" #include "paddle/pten/api/lib/utils/allocator.h" #include "paddle/pten/core/dense_tensor.h" namespace pten { namespace tests { namespace framework = paddle::framework; using DDim = paddle::framework::DDim; // TODO(YuanRisheng): This TEST file need to be refactored after 'copy' realized // in // 'paddle/api', TEST(DEV_API, copy) { // 1. create tensor const auto alloc = std::make_shared( paddle::platform::CPUPlace()); auto dense_src = std::make_shared( alloc, pten::DenseTensorMeta(pten::DataType::FLOAT32, framework::make_ddim({2, 3}), pten::DataLayout::NCHW)); auto* dense_x_data = dense_src->mutable_data(); auto dense_dst = std::make_shared( alloc, pten::DenseTensorMeta(pten::DataType::FLOAT32, framework::make_ddim({2, 3}), pten::DataLayout::NCHW)); for (size_t i = 0; i < 2; ++i) { for (size_t j = 0; j < 3; ++j) { dense_x_data[i * 3 + j] = (i * 3 + j) * 1.0; } } const auto& a = paddle::platform::CPUPlace(); std::cout << typeid(a).name() << std::endl; // 2. test API auto& pool = paddle::platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.GetByPlace(paddle::platform::CPUPlace()); pten::Copy(*dev_ctx, *(dense_src.get()), false, dense_dst.get()); // 3. check result for (int64_t i = 0; i < dense_src->numel(); i++) { ASSERT_EQ(dense_src->data()[i], dense_dst->data()[i]); } } } // namespace tests } // namespace pten