# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest, convert_float_to_uint16 import paddle import paddle.fluid as fluid import paddle.fluid.core as core def p_norm(x, axis, porder, keepdims=False, reduce_all=False): r = [] if axis is None or reduce_all: x = x.flatten() if porder == np.inf: r = np.amax(np.abs(x), keepdims=keepdims) elif porder == -np.inf: r = np.amin(np.abs(x), keepdims=keepdims) else: r = np.linalg.norm(x, ord=porder, keepdims=keepdims) elif isinstance(axis, list or tuple) and len(axis) == 2: if porder == np.inf: axis = tuple(axis) r = np.amax(np.abs(x), axis=axis, keepdims=keepdims) elif porder == -np.inf: axis = tuple(axis) r = np.amin(np.abs(x), axis=axis, keepdims=keepdims) elif porder == 0: axis = tuple(axis) r = x.astype(bool) r = np.sum(r, axis, keepdims=keepdims) elif porder == 1: axis = tuple(axis) r = np.sum(np.abs(x), axis, keepdims=keepdims) else: axis = tuple(axis) xp = np.power(np.abs(x), porder) s = np.sum(xp, axis=axis, keepdims=keepdims) r = np.power(s, 1.0 / porder) else: if isinstance(axis, list): axis = tuple(axis) r = np.linalg.norm(x, ord=porder, axis=axis, keepdims=keepdims) r = r.astype(x.dtype) return r def frobenius_norm(x, axis=None, keepdims=False): if isinstance(axis, list): axis = tuple(axis) if axis is None: x = x.reshape(1, x.size) r = np.linalg.norm( x, ord='fro', axis=axis, keepdims=keepdims).astype(x.dtype) return r class TestFrobeniusNormOp(OpTest): def setUp(self): self.op_type = "frobenius_norm" self.init_test_case() x = (np.random.random(self.shape) + 1.0).astype(self.dtype) norm = frobenius_norm(x, self.axis, self.keepdim) self.reduce_all = (len(self.axis) == len(self.shape)) self.inputs = {'X': x} self.attrs = { 'dim': list(self.axis), 'keep_dim': self.keepdim, 'reduce_all': self.reduce_all } self.outputs = {'Out': norm} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') def init_test_case(self): self.shape = [2, 3, 4, 5] self.axis = (1, 2) self.keepdim = False self.dtype = "float64" class TestFrobeniusNormOp2(TestFrobeniusNormOp): def init_test_case(self): self.shape = [5, 5, 5] self.axis = (0, 1) self.keepdim = True self.dtype = "float32" def test_check_grad(self): self.check_grad(['X'], 'Out') class TestPnormOp(OpTest): def setUp(self): self.op_type = "p_norm" self.init_test_case() x = (np.random.random(self.shape) + 0.5).astype(self.dtype) norm = p_norm(x, self.axis, self.porder, self.keepdim, self.asvector) self.inputs = {'X': x} self.attrs = { 'epsilon': self.epsilon, 'axis': self.axis, 'keepdim': self.keepdim, 'porder': float(self.porder), 'asvector': self.asvector } self.outputs = {'Out': norm} self.gradient = self.calc_gradient() def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') def init_test_case(self): self.shape = [2, 3, 4, 5] self.axis = 1 self.epsilon = 1e-12 self.porder = 2.0 self.keepdim = False self.dtype = "float64" self.asvector = False def calc_gradient(self): self.attrs = { 'epsilon': self.epsilon, 'axis': self.axis, 'keepdim': self.keepdim, 'porder': float(self.porder), 'asvector': self.asvector } x = self.inputs["X"] porder = self.attrs["porder"] axis = self.attrs["axis"] asvector = self.attrs["asvector"] x_dtype = x.dtype x = x.astype(np.float32) if x.dtype == np.float16 else x if porder == 0: grad = np.zeros(x.shape).astype(x.dtype) elif porder in [float("inf"), float("-inf")]: norm = p_norm( x, axis=axis, porder=porder, keepdims=True, reduce_all=asvector) x_abs = np.abs(x) grad = np.sign(x) grad[x_abs != norm] = 0.0 else: norm = p_norm( x, axis=axis, porder=porder, keepdims=True, reduce_all=asvector) grad = np.power(norm, 1 - porder) * np.power( np.abs(x), porder - 1) * np.sign(x) numel = 1 for s in x.shape: numel *= s divisor = numel if asvector else x.shape[axis] numel /= divisor return [grad.astype(x_dtype) * 1 / numel] class TestPnormOp2(TestPnormOp): def init_test_case(self): self.shape = [3, 20, 3] self.axis = 2 self.epsilon = 1e-12 self.porder = 2.0 self.keepdim = True self.dtype = "float32" self.asvector = False def test_check_grad(self): self.check_grad(['X'], 'Out') class TestPnormOp3(TestPnormOp): def init_test_case(self): self.shape = [3, 20, 3] self.axis = 2 self.epsilon = 1e-12 self.porder = np.inf self.keepdim = True self.dtype = "float32" self.asvector = False def test_check_grad(self): self.check_grad(['X'], 'Out', user_defined_grads=self.gradient) class TestPnormOp4(TestPnormOp): def init_test_case(self): self.shape = [3, 20, 3] self.axis = 2 self.epsilon = 1e-12 self.porder = -np.inf self.keepdim = True self.dtype = "float32" self.asvector = False def test_check_grad(self): self.check_grad(['X'], 'Out', user_defined_grads=self.gradient) class TestPnormOp5(TestPnormOp): def init_test_case(self): self.shape = [3, 20, 3] self.axis = 2 self.epsilon = 1e-12 self.porder = 0 self.keepdim = True self.dtype = "float32" self.asvector = False def test_check_grad(self): self.check_grad(['X'], 'Out', user_defined_grads=self.gradient) class TestPnormOp6(TestPnormOp): def init_test_case(self): self.shape = [3, 20, 3] self.axis = -1 self.epsilon = 1e-12 self.porder = 2 self.keepdim = False self.dtype = "float32" self.asvector = True def test_check_grad(self): self.check_grad(['X'], 'Out', user_defined_grads=self.gradient) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestPnormOpFP16(TestPnormOp): def init_test_case(self): self.shape = [2, 3, 4, 5] self.axis = 1 self.epsilon = 1e-12 self.porder = 2.0 self.keepdim = False self.dtype = "float16" self.asvector = False def test_check_output(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) def test_check_grad(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_grad_with_place( place, ['X'], 'Out', user_defined_grads=self.gradient) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestPnormOpFP161(TestPnormOpFP16): def init_test_case(self): self.shape = [2, 3, 4, 5] self.axis = -1 self.epsilon = 1e-12 self.porder = 2.0 self.keepdim = False self.dtype = "float16" self.asvector = True @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestPnormBF16Op(OpTest): def setUp(self): self.op_type = "p_norm" self.init_test_case() self.x = (np.random.random(self.shape) + 0.5).astype(np.float32) self.norm = p_norm(self.x, self.axis, self.porder, self.keepdim, self.asvector) self.gradient = self.calc_gradient() self.inputs = {'X': convert_float_to_uint16(self.x)} self.attrs = { 'epsilon': self.epsilon, 'axis': self.axis, 'keepdim': self.keepdim, 'porder': float(self.porder), 'asvector': self.asvector } self.outputs = {'Out': convert_float_to_uint16(self.norm)} def test_check_output(self): place = core.CUDAPlace(0) self.check_output_with_place(place, atol=1e-3) def test_check_grad(self): place = core.CUDAPlace(0) self.check_grad_with_place( place, ['X'], 'Out', user_defined_grads=self.gradient) def init_test_case(self): self.shape = [2, 3, 4, 5] self.axis = 1 self.epsilon = 1e-12 self.porder = 2.0 self.keepdim = False self.dtype = np.uint16 self.asvector = False def calc_gradient(self): self.attrs = { 'epsilon': self.epsilon, 'axis': self.axis, 'keepdim': self.keepdim, 'porder': float(self.porder), 'asvector': self.asvector } x = self.x porder = self.attrs["porder"] axis = self.attrs["axis"] asvector = self.attrs["asvector"] x_dtype = x.dtype x = x.astype(np.float32) if x.dtype == np.float16 else x if porder == 0: grad = np.zeros(x.shape).astype(x.dtype) elif porder in [float("inf"), float("-inf")]: norm = p_norm( x, axis=axis, porder=porder, keepdims=True, reduce_all=asvector) x_abs = np.abs(x) grad = np.sign(x) grad[x_abs != norm] = 0.0 else: norm = p_norm( x, axis=axis, porder=porder, keepdims=True, reduce_all=asvector) grad = np.power(norm, 1 - porder) * np.power( np.abs(x), porder - 1) * np.sign(x) numel = 1 for s in x.shape: numel *= s divisor = numel if asvector else x.shape[axis] numel /= divisor return [grad.astype(x_dtype) * 1 / numel] def run_fro(self, p, axis, shape_x, dtype, keep_dim, check_dim=False): with fluid.program_guard(fluid.Program()): data = fluid.data(name="X", shape=shape_x, dtype=dtype) out = paddle.norm(x=data, p=p, axis=axis, keepdim=keep_dim) place = fluid.CPUPlace() exe = fluid.Executor(place) np_input = (np.random.rand(*shape_x) + 1.0).astype(dtype) expected_result = frobenius_norm(np_input, axis=axis, keepdims=keep_dim) result, = exe.run(feed={"X": np_input}, fetch_list=[out]) self.assertEqual((np.abs(result - expected_result) < 1e-6).all(), True) if keep_dim and check_dim: self.assertEqual( (np.abs(np.array(result.shape) - np.array(expected_result.shape)) < 1e-6).all(), True) def run_pnorm(self, p, axis, shape_x, dtype, keep_dim, check_dim=False): with fluid.program_guard(fluid.Program()): data = fluid.data(name="X", shape=shape_x, dtype=dtype) out = paddle.norm(x=data, p=p, axis=axis, keepdim=keep_dim) place = fluid.CPUPlace() exe = fluid.Executor(place) np_input = (np.random.rand(*shape_x) + 1.0).astype(dtype) expected_result = p_norm( np_input, porder=p, axis=axis, keepdims=keep_dim).astype(dtype) result, = exe.run(feed={"X": np_input}, fetch_list=[out]) self.assertEqual((np.abs(result - expected_result) < 1e-6).all(), True) if keep_dim and check_dim: self.assertEqual( (np.abs(np.array(result.shape) - np.array(expected_result.shape)) < 1e-6).all(), True) def run_graph(self, p, axis, shape_x, dtype): paddle.disable_static() shape = [2, 3, 4] np_input = np.arange(24).astype('float32') - 12 np_input = np_input.reshape(shape) x = paddle.to_tensor(np_input) #[[[-12. -11. -10. -9.] [ -8. -7. -6. -5.] [ -4. -3. -2. -1.]] # [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.]]] out_pnorm = paddle.norm(x, p=2, axis=-1) # compute frobenius norm along last two dimensions. out_fro = paddle.norm(x, p='fro') out_fro = paddle.norm(x, p='fro', axis=0) out_fro = paddle.norm(x, p='fro', axis=[0, 1]) # compute 2-order norm along [0,1] dimension. out_pnorm = paddle.norm(x, p=2, axis=[0, 1]) out_pnorm = paddle.norm(x, p=2) #out_pnorm = [17.43559577 16.91153453 16.73320053 16.91153453] # compute inf-order norm out_pnorm = paddle.norm(x, p=np.inf) #out_pnorm = [12.] out_pnorm = paddle.norm(x, p=np.inf, axis=0) #out_pnorm = [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]] # compute -inf-order norm out_pnorm = paddle.norm(x, p=-np.inf) #out_pnorm = [0.] out_pnorm = paddle.norm(x, p=-np.inf, axis=0) # out_fro = [17.43559577 16.91153453 16.73320053 16.91153453] paddle.enable_static() class API_NormTest(unittest.TestCase): def test_basic(self): keep_dims = {False, True} for keep in keep_dims: run_fro( self, p='fro', axis=None, shape_x=[2, 3, 4], dtype="float32", keep_dim=keep) run_fro( self, p='fro', axis=[0, 1], shape_x=[2, 3, 4], dtype="float64", keep_dim=keep, check_dim=True) run_pnorm( self, p=2, axis=None, shape_x=[3, 4], dtype="float32", keep_dim=keep) run_pnorm( self, p=2, axis=1, shape_x=[3, 4], dtype="float64", keep_dim=keep, check_dim=True) run_pnorm( self, p=np.inf, axis=0, shape_x=[2, 3, 4], dtype="float32", keep_dim=keep, check_dim=True) run_pnorm( self, p=np.inf, axis=None, shape_x=[2, 3, 4], dtype="float32", keep_dim=keep) run_pnorm( self, p=-np.inf, axis=0, shape_x=[2, 3, 4], dtype="float64", keep_dim=keep, check_dim=True) run_pnorm( self, p=-np.inf, axis=None, shape_x=[2, 3, 4], dtype="float64", keep_dim=keep) run_pnorm( self, p=0, axis=1, shape_x=[3, 4], dtype="float64", keep_dim=keep, check_dim=True) run_pnorm( self, p=1, axis=1, shape_x=[3, 4], dtype="float64", keep_dim=keep, check_dim=True) run_pnorm( self, p=0, axis=None, shape_x=[3, 4], dtype="float64", keep_dim=keep, check_dim=True) run_pnorm( self, p=2, axis=[0, 1], shape_x=[2, 3, 4], dtype="float64", keep_dim=keep, check_dim=True) run_pnorm( self, p=2, axis=-1, shape_x=[2, 3, 4], dtype="float64", keep_dim=keep, check_dim=True) run_pnorm( self, p=1, axis=[0, 1], shape_x=[2, 3, 4], dtype="float64", keep_dim=keep, check_dim=True) run_pnorm( self, p=np.inf, axis=[0, 1], shape_x=[2, 3, 4], dtype="float64", keep_dim=keep, check_dim=True) run_pnorm( self, p=-np.inf, axis=[0, 1], shape_x=[2, 3, 4], dtype="float64", keep_dim=keep, check_dim=True) def test_dygraph(self): run_graph(self, p='fro', axis=None, shape_x=[2, 3, 4], dtype="float32") def test_name(self): with fluid.program_guard(fluid.Program()): x = fluid.data(name="x", shape=[10, 10], dtype="float32") y_1 = paddle.norm(x, p='fro', name='frobenius_name') y_2 = paddle.norm(x, p=2, name='pnorm_name') self.assertEqual(('frobenius_name' in y_1.name), True) self.assertEqual(('pnorm_name' in y_2.name), True) def test_errors(self): with fluid.program_guard(fluid.Program(), fluid.Program()): def err_dtype(p, shape_x, xdtype, out=None): data = fluid.data(shape=shape_x, dtype=xdtype) paddle.norm(data, p=p, out=out) self.assertRaises(TypeError, err_dtype, "fro", [2, 2], "int64") self.assertRaises(ValueError, paddle.norm, "inf", [2], "int64") out = fluid.data(name="out", shape=[1], dtype="int64") self.assertRaises(TypeError, err_dtype, "fro", [2, 2], "float64", out) self.assertRaises(TypeError, err_dtype, 2, [10], "int64") self.assertRaises(TypeError, err_dtype, 2, [10], "float64", out) data = fluid.data(name="data_2d", shape=[2, 2], dtype="float64") self.assertRaises(ValueError, paddle.norm, data, p="unsupport norm") self.assertRaises(ValueError, paddle.norm, data, p=[1]) self.assertRaises(ValueError, paddle.norm, data, p=[1], axis=-1) self.assertRaises(ValueError, paddle.norm, 0, [1, 0], "float64") data = fluid.data(name="data_3d", shape=[2, 2, 2], dtype="float64") self.assertRaises( ValueError, paddle.norm, data, p='unspport', axis=[-3, -2, -1]) if __name__ == '__main__': paddle.enable_static() unittest.main()