# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest from paddle import fluid from paddle.fluid.layers import lstm_unit from paddle.fluid.framework import program_guard, Program def sigmoid_np(x): return 1. / (1. + np.exp(-x)) def tanh_np(x): return 2 * sigmoid_np(2. * x) - 1. class LstmUnitTestError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): batch_size, dict_dim, emb_dim, hidden_dim = 32, 128, 64, 512 data = fluid.data( name='step_data', shape=[batch_size], dtype='int64') inputs = fluid.embedding(input=data, size=[dict_dim, emb_dim]) pre_hidden = fluid.data( name='pre_hidden', shape=[batch_size, hidden_dim], dtype='float32') pre_cell = fluid.data( name='pre_cell', shape=[batch_size, hidden_dim], dtype='float32') np_input = np.random.uniform( -0.1, 0.1, (batch_size, emb_dim)).astype('float64') np_pre_hidden = np.random.uniform( -0.1, 0.1, (batch_size, hidden_dim)).astype('float64') np_pre_cell = np.random.uniform( -0.1, 0.1, (batch_size, hidden_dim)).astype('float64') def test_input_Variable(): lstm_unit(np_input, pre_hidden, pre_cell) self.assertRaises(TypeError, test_input_Variable) def test_pre_hidden_Variable(): lstm_unit(inputs, np_pre_hidden, pre_cell) self.assertRaises(TypeError, test_pre_hidden_Variable) def test_pre_cell_Variable(): lstm_unit(inputs, pre_hidden, np_pre_cell) self.assertRaises(TypeError, test_pre_cell_Variable) def test_input_type(): error_input = fluid.data( name='error_input', shape=[batch_size, emb_dim], dtype='int32') lstm_unit(error_input, pre_hidden, pre_cell) self.assertRaises(TypeError, test_input_type) def test_pre_hidden_type(): error_pre_hidden = fluid.data( name='error_pre_hidden', shape=[batch_size, hidden_dim], dtype='int32') lstm_unit(inputs, error_pre_hidden, pre_cell) self.assertRaises(TypeError, test_pre_hidden_type) def test_pre_cell_type(): error_pre_cell = fluid.data( name='error_pre_cell', shape=[batch_size, hidden_dim], dtype='int32') lstm_unit(inputs, pre_hidden, error_pre_cell) self.assertRaises(TypeError, test_pre_cell_type) class LstmUnitTest(OpTest): def setUp(self): self.op_type = "lstm_unit" x_np = np.random.normal(size=(15, 160)).astype("float64") c_np = np.random.normal(size=(15, 40)).astype("float64") i_np, f_np, o_np, j_np = np.split(x_np, 4, axis=1) forget_bias_np = 0. self.attrs = {'forget_bias': 0.} new_c = c_np * sigmoid_np(f_np + forget_bias_np) + sigmoid_np( i_np) * tanh_np(j_np) new_h = tanh_np(new_c) * sigmoid_np(o_np) self.inputs = {'X': x_np, 'C_prev': c_np} self.outputs = {'C': new_c, 'H': new_h} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X', 'C_prev'], ['C', 'H']) if __name__ == "__main__": unittest.main()