/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "gtest/gtest.h" #include "paddle/fluid/distributed/ps.pb.h" #include "paddle/fluid/distributed/ps/table/common_dense_table.h" namespace paddle { namespace distributed { // CommonDenseTable + Adam class Table; TEST(CommonDenseTable, Adam) { int fea_dim = 10; int trainers = 2; TableParameter table_config; table_config.set_table_class("CommonDenseTable"); FsClientParameter fs_config; Table *table = new CommonDenseTable(); TableAccessorParameter *accessor_config = table_config.mutable_accessor(); accessor_config->set_accessor_class("CommMergeAccessor"); CommonAccessorParameter *common_config = table_config.mutable_common(); // set adam optimize config common_config->set_name("adam_d2sum"); common_config->set_table_name("adam_test_table"); common_config->set_trainer_num(trainers); common_config->add_params("Param"); common_config->add_dims(fea_dim); common_config->add_initializers("gaussian_random&0&0.0&1.0"); common_config->add_params("D2Sum"); common_config->add_dims(fea_dim); common_config->add_initializers("fill_constant&0.0"); common_config->add_params("G2Sum"); common_config->add_dims(fea_dim); common_config->add_initializers("fill_constant&0.0"); common_config->add_params("Moment"); common_config->add_dims(fea_dim); common_config->add_initializers("fill_constant&0.0"); common_config->add_params("MomentDecayRate"); common_config->add_dims(1); common_config->add_initializers("fill_constant&0.99"); common_config->add_params("AdaDecayRate"); common_config->add_dims(1); common_config->add_initializers("fill_constant&0.9999"); common_config->add_params("AdaEpsilon"); common_config->add_dims(1); common_config->add_initializers("fill_constant&1.0e-8"); common_config->add_params("LearningRate"); common_config->add_dims(1); common_config->add_initializers("fill_constant&5e-6"); auto ret = table->Initialize(table_config, fs_config); ASSERT_EQ(ret, 0); // pull parameters for create and check std::vector init_values; init_values.resize(fea_dim); TableContext table_context1; table_context1.value_type = Dense; table_context1.pull_context.values = init_values.data(); table_context1.num = fea_dim; table->Pull(table_context1); // table->PullDense(init_values.data(), fea_dim); // push gradient std::vector> trainer_gradient_values; trainer_gradient_values.resize(trainers); float start = 10.0; for (int i = 0; i < trainers; i++) { for (int k = 0; k < fea_dim; k++) { trainer_gradient_values[i].push_back(start); start += 0.1; } } // for adam for (int i = 0; i < trainers; i++) { auto &push_values = trainer_gradient_values[i]; TableContext table_context; table_context.value_type = Dense; table_context.push_context.values = push_values.data(); table_context.num = push_values.size(); table->Push(table_context); // table->PushDense(push_values.data(), push_values.size()); } std::vector pull_values; pull_values.resize(fea_dim); TableContext table_context; table_context.value_type = Dense; table_context.pull_context.values = pull_values.data(); table_context.num = fea_dim; table->Pull(table_context); // table->PullDense(pull_values.data(), fea_dim); float mom_rate = 0.99; float decay_rate = 0.9999; float epsilon = 1.0e-8; float lr = 5e-6; std::vector d2sum, g2sum, mom, param; for (int i = 0; i < fea_dim; i++) { mom.push_back(0.0); d2sum.push_back(0.0); g2sum.push_back(0.0); param.push_back(init_values[i]); } for (int i = 0; i < trainers; i++) { for (int j = 0; j < fea_dim; j++) { d2sum[j] = d2sum[j] * decay_rate + 1; g2sum[j] = g2sum[j] * decay_rate + trainer_gradient_values[i][j] * trainer_gradient_values[i][j]; float scale = d2sum[j] * epsilon; scale = (scale + d2sum[j]) / (scale + g2sum[j]); scale = sqrt(scale); mom[j] = (mom[j] - trainer_gradient_values[i][j]) * mom_rate + trainer_gradient_values[i][j]; param[j] = param[j] - lr * scale * mom[j]; } } for (int j = 0; j < fea_dim; j++) { VLOG(0) << param[j] << " " << pull_values[j]; ASSERT_TRUE(abs(param[j] - pull_values[j]) < 1e-5); } } // CommonDenseTable + Adam TEST(CommonDenseTable, SGD) { int fea_dim = 10; int trainers = 2; TableParameter table_config; table_config.set_table_class("CommonDenseTable"); FsClientParameter fs_config; Table *table = new CommonDenseTable(); TableAccessorParameter *accessor_config = table_config.mutable_accessor(); accessor_config->set_accessor_class("CommMergeAccessor"); CommonAccessorParameter *common_config = table_config.mutable_common(); common_config->set_name("sgd"); common_config->set_table_name("sgd_test_table"); common_config->set_trainer_num(trainers); common_config->add_params("Param"); common_config->add_dims(fea_dim); common_config->add_initializers("gaussian_random&0&0.0&1.0"); common_config->add_params("LearningRate"); common_config->add_dims(1); common_config->add_initializers("fill_constant&1.0"); auto ret = table->Initialize(table_config, fs_config); ASSERT_EQ(ret, 0); // pull parameters for create and check std::vector init_values; init_values.resize(fea_dim); TableContext table_context1; table_context1.value_type = Dense; table_context1.pull_context.values = init_values.data(); table_context1.num = fea_dim; table->Pull(table_context1); // table->PullDense(init_values.data(), fea_dim); std::vector total_gradients; total_gradients.resize(fea_dim); memset(total_gradients.data(), 0, sizeof(float) * total_gradients.size()); // push gradient std::vector> trainer_gradient_values; trainer_gradient_values.resize(trainers); float start = 10.0; for (int i = 0; i < trainers; i++) { for (int k = 0; k < fea_dim; k++) { trainer_gradient_values[i].push_back(start); total_gradients[k] += start; start += 0.1; } } std::shared_ptr<::ThreadPool> pool_ = std::make_shared<::ThreadPool>(trainers); std::vector> task_status; for (int i = 0; i < trainers; i++) { auto &push_values = trainer_gradient_values[i]; auto task = [table, &push_values] { TableContext table_context; table_context.value_type = Dense; table_context.push_context.values = push_values.data(); table_context.num = push_values.size(); table->Push(table_context); // table->PushDense(push_values.data(), push_values.size()); }; task_status.push_back(pool_->enqueue(std::move(task))); } for (auto &status : task_status) { status.wait(); } std::vector pull_values; pull_values.resize(fea_dim); TableContext table_context; table_context.value_type = Dense; table_context.pull_context.values = pull_values.data(); table_context.num = fea_dim; table->Pull(table_context); // table->PullDense(pull_values.data(), fea_dim); for (int j = 0; j < fea_dim; j++) { auto update_val = init_values[j] - 1.0 * total_gradients[j]; ASSERT_TRUE(abs(update_val - pull_values[j]) < 1e-5); } } } // namespace distributed } // namespace paddle