/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "gflags/gflags.h" #include "paddle/framework/lod_tensor.h" #include "paddle/inference/io.h" DEFINE_string(dirname, "", "Directory of the inference model."); template void TestInference(const std::string& dirname, const std::vector& cpu_feeds, std::vector& cpu_fetchs) { // 1. Define place, executor and scope auto place = Place(); auto executor = paddle::framework::Executor(place); auto* scope = new paddle::framework::Scope(); // 2. Initialize the inference_program and load all parameters from file auto inference_program = paddle::inference::Load(executor, *scope, dirname); // 3. Get the feed_target_names and fetch_target_names const std::vector& feed_target_names = inference_program->GetFeedTargetNames(); const std::vector& fetch_target_names = inference_program->GetFetchTargetNames(); // 4. Prepare inputs: set up maps for feed targets std::map feed_targets; for (size_t i = 0; i < feed_target_names.size(); ++i) { // Please make sure that cpu_feeds[i] is right for feed_target_names[i] feed_targets[feed_target_names[i]] = cpu_feeds[i]; } // 5. Define Tensor to get the outputs: set up maps for fetch targets std::map fetch_targets; for (size_t i = 0; i < fetch_target_names.size(); ++i) { fetch_targets[fetch_target_names[i]] = cpu_fetchs[i]; } // 6. Run the inference program executor.Run(*inference_program, scope, feed_targets, fetch_targets); delete scope; } template void SetupTensor(paddle::framework::LoDTensor& input, paddle::framework::DDim dims, T lower, T upper) { srand(time(0)); float* input_ptr = input.mutable_data(dims, paddle::platform::CPUPlace()); for (int i = 0; i < input.numel(); ++i) { input_ptr[i] = (static_cast(rand()) / static_cast(RAND_MAX)) * (upper - lower) + lower; } } template void CheckError(paddle::framework::LoDTensor& output1, paddle::framework::LoDTensor& output2) { // Check lod information EXPECT_EQ(output1.lod(), output2.lod()); EXPECT_EQ(output1.dims(), output2.dims()); EXPECT_EQ(output1.numel(), output2.numel()); T err = static_cast(0); if (typeid(T) == typeid(float)) { err = 1E-3; } else if (typeid(T) == typeid(double)) { err = 1E-6; } else { err = 0; } size_t count = 0; for (int64_t i = 0; i < output1.numel(); ++i) { if (fabs(output1.data()[i] - output2.data()[i]) > err) { count++; } } EXPECT_EQ(count, 0) << "There are " << count << " different elements."; } TEST(inference, recognize_digits) { if (FLAGS_dirname.empty()) { LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model"; } LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl; std::string dirname = FLAGS_dirname; // 0. Call `paddle::framework::InitDevices()` initialize all the devices // In unittests, this is done in paddle/testing/paddle_gtest_main.cc paddle::framework::LoDTensor input; // Use normilized image pixels as input data, // which should be in the range [-1.0, 1.0]. SetupTensor( input, {1, 28, 28}, static_cast(-1), static_cast(1)); std::vector cpu_feeds; cpu_feeds.push_back(&input); paddle::framework::LoDTensor output1; std::vector cpu_fetchs1; cpu_fetchs1.push_back(&output1); // Run inference on CPU TestInference( dirname, cpu_feeds, cpu_fetchs1); LOG(INFO) << output1.dims(); #ifdef PADDLE_WITH_CUDA paddle::framework::LoDTensor output2; std::vector cpu_fetchs2; cpu_fetchs2.push_back(&output2); // Run inference on CUDA GPU TestInference( dirname, cpu_feeds, cpu_fetchs2); LOG(INFO) << output2.dims(); CheckError(output1, output2); #endif }