# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle.fluid as fluid import numpy as np class MLP(fluid.Layer): def __init__(self, input_size): super(MLP, self).__init__() self._linear1 = fluid.dygraph.Linear( input_size, 3, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1)), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1))) self._linear2 = fluid.dygraph.Linear( 3, 4, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1)), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1))) def forward(self, inputs): x = self._linear1(inputs) x = self._linear2(x) x = fluid.layers.reduce_sum(x) return x class TestDygraphDebugString(unittest.TestCase): def test_dygraph_debug_string(self): np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) unique_name = 0 trace_var = 0 alive_var = 0 with fluid.dygraph.guard(): mlp = MLP(input_size=2) for i in range(10): var_inp = fluid.dygraph.base.to_variable(np_inp) out = mlp(var_inp) out.backward() mlp.clear_gradients() unique_name_tmp, trace_var_tmp, alive_var_tmp = fluid.dygraph.base._print_debug_msg( mlp.parameters(), is_test=True) if i > 0: self.assertGreaterEqual(unique_name, unique_name_tmp) self.assertGreaterEqual(trace_var, trace_var_tmp) self.assertGreaterEqual(alive_var, alive_var_tmp) else: unique_name = unique_name_tmp trace_var = trace_var_tmp alive_var = alive_var_tmp try: fluid.dygraph.base._print_debug_msg(mlp.parameters()) except Exception as e: raise RuntimeError( "No Exception is accepted in _print_debug_msg, but we got: {}". format(e))