# Automatic Differentiation with the Tape
## Automatic Differentiation
A key challenge in deep learning is to automatically derive the backward pass given the forward pass as a program, which has been long studied in the field of [automatic differentiation](https://arxiv.org/pdf/1502.05767.pdf), or autodiff, before the prosperity of deep learning.
## Program Transformation v.s. Backtracking
Given the forward pass program, there are two strategies to derive the backward pass:
1. by transforming the forward pass program without executing it, or
1. by backtracking the execution process of the forward pass program.
This article is about the latter strategy.
## The Tape and Dynamic Networks
We refer to the trace of the execution of the forward pass program as a *tape* [[1]](http://www.bcl.hamilton.ie/~barak/papers/toplas-reverse.pdf). When we train a deep learning model, the tape changes every iteration as the input data change, so we'd have to re-derive the backward pass, which is time-consuming, but also eases the case that the forward program includes control flows like if-else and for/while. With these control flows, the execution trace might change with iterations. Such changes are known as *dynamic networks* in the field of deep learning.
## Typical Systems
Deep learning systems that utilize the idea of dynamic networks gained their popularities in recent years. This article surveys the following typical systems:
- [DyNet](https://dynet.readthedocs.io/en/latest/)
- [PyTorch](https://pytorch.org/)
- Chainer
- Autograd from HIPS
Before diving into these systems, let us pose an example forward pass program:
```python
x = Variable(randn(20, 1)))
label = Variable(randint(1))
W_1, W_2 = Variable(randn(20, 20)), Variable(randn(10, 20))
h = matmul(W_1, x)
pred = matmul(W_2, h)
loss = softmax(pred, label)
loss.backward()
```
## The Representation of Tapes
### DyNet: the Tape as a List
DyNet uses a linear data structure, a list, to represent the tape. During the execution of the above example, it is a list of operators: `matmul`, `matmul`, and `softmax`. The list also includes information needed to do the backward pass, such as pointers to the inputs and outputs. Then the tape is played in reverse order at `loss.backward().`
digraph g {
graph [
rankdir = "LR"
];
node [
fontsize = "16"
shape = "ellipse"
];
edge [];
"node0" [
label = " type: matmul | input: W_1, x | output: h"
shape = "record"
];
"node1" [
label = " type: matmul | input: W_2, h | output: pred"
shape = "record"
];
"node2" [
label = " type: softmax | input: pred, label | output: loss"
shape = "record"
];
"node0":f0 -> "node1":f0 [];
"node1":f0 -> "node2":f0 [];
}
![Alt text](https://g.gravizo.com/svg?digraph%20g%20{%20graph%20[%20rankdir%20=%20%22LR%22%20];%20node%20[%20fontsize%20=%20%2216%22%20shape%20=%20%22ellipse%22%20];%20edge%20[];%20%22node0%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20%3Cf1%3E%20input:%20W_1,%20x%20|%20%3Cf2%3E%20output:%20h%22%20shape%20=%20%22record%22%20];%20%22node1%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20%3Cf1%3E%20input:%20W_2,%20h%20|%20%3Cf2%3E%20output:%20pred%22%20shape%20=%20%22record%22%20];%20%22node2%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20softmax%20|%20%3Cf1%3E%20input:%20pred,%20label%20|%20%3Cf2%3E%20output:%20loss%22%20shape%20=%20%22record%22%20];%20%22node0%22:f0%20-%3E%20%22node1%22:f0%20[%20id%20=%200%20];%20%22node1%22:f0%20-%3E%20%22node2%22:f0%20[%20id%20=%201%20];%20})
### PyTorch: the Tape as a Graph
The graph is composed of `Variable`s and `Function`s. During the forward execution, a `Variable` records its creator function, e.g. `h.creator = matmul`. And a Function records its inputs' previous/dependent functions `prev_func` through `creator`, e.g. `matmul.prev_func = matmul1`. At `loss.backward()`, a topological sort is performed on all `prev_func`s. Then the grad op is performed by the sorted order. Please be aware that a `Function` might have more than one `prev_func`s.
digraph g {
graph [
rankdir = "LR"
];
subgraph function {
node [
fontsize = "16"
style = filled
shape = "record"
];
"matmul0" [ label = " type: matmul | prev_func: None" ];
"matmul1" [ label = " type: matmul | prev_func: matmul" ];
"softmax" [ label = " type: softmax | prev_func: matmul" ];
}
subgraph variable {
node [
fontsize = "16"
shape = "Mrecord"
style = filled
fillcolor = white
];
"x" [ label = " x | creator: None" ];
"label" [ label = " label | creator: None" ];
"W_1" [ label = " W_1 | creator: None" ];
"W_2" [ label = " W_2 | creator: None" ];
"h" [ label = " h | creator: None" ];
"pred" [ label = " pred | creator: matmul" ];
"loss" [ label = " loss | creator: softmax" ];
}
subgraph data_flow {
"x":f0 -> "matmul0":f0;
"W_1":f0 -> "matmul0":f0;
"matmul0":f0 -> "h":f0;
"h":f0 -> "matmul1":f0;
"W_2":f0 -> "matmul1":f0;
"matmul1":f0 -> "pred":f0;
"pred":f0 -> "softmax":f0;
"label":f0 -> "softmax":f0;
"softmax":f0 -> "loss":f0;
}
subgraph prev_func {
edge [color="red", arrowsize="0.6", penwidth="1", constraint=false];
"matmul1":f1 -> "matmul0":f0;
"softmax":f1 -> "matmul1":f0;
label = "prev_func";
}
}
![Alt text](https://g.gravizo.com/svg?digraph%20g%20{%20graph%20[%20rankdir%20=%20%22LR%22%20];%20subgraph%20function%20{%20node%20[%20fontsize%20=%20%2216%22%20style%20=%20filled%20shape%20=%20%22record%22%20];%20%22matmul0%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20prev_func:%20None%22%20];%20%22matmul1%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20prev_func:%20matmul%22%20];%20%22softmax%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20softmax%20|%20prev_func:%20matmul%22%20];%20}%20subgraph%20variable%20{%20node%20[%20fontsize%20=%20%2216%22%20shape%20=%20%22Mrecord%22%20style%20=%20filled%20fillcolor%20=%20white%20];%20%22x%22%20[%20label%20=%20%22%3Cf0%3E%20x%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22label%22%20[%20label%20=%20%22%3Cf0%3E%20label%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22W_1%22%20[%20label%20=%20%22%3Cf0%3E%20W_1%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22W_2%22%20[%20label%20=%20%22%3Cf0%3E%20W_2%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22h%22%20[%20label%20=%20%22%3Cf0%3E%20h%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22pred%22%20[%20label%20=%20%22%3Cf0%3E%20pred%20|%20%3Cf1%3E%20creator:%20matmul%22%20];%20%22loss%22%20[%20label%20=%20%22%3Cf0%3E%20loss%20|%20%3Cf1%3E%20creator:%20softmax%22%20];%20}%20subgraph%20data_flow%20{%20%22x%22:f0%20-%3E%20%22matmul0%22:f0;%20%22W_1%22:f0%20-%3E%20%22matmul0%22:f0;%20%22matmul0%22:f0%20-%3E%20%22h%22:f0;%20%22h%22:f0%20-%3E%20%22matmul1%22:f0;%20%22W_2%22:f0%20-%3E%20%22matmul1%22:f0;%20%22matmul1%22:f0%20-%3E%20%22pred%22:f0;%20%22pred%22:f0%20-%3E%20%22softmax%22:f0;%20%22label%22:f0%20-%3E%20%22softmax%22:f0;%20%22softmax%22:f0%20-%3E%20%22loss%22:f0;%20}%20subgraph%20prev_func%20{%20edge%20[color=%22red%22,%20arrowsize=%220.6%22,%20penwidth=%221%22,%20constraint=false];%20%22matmul1%22:f1%20-%3E%20%22matmul0%22:f0;%20%22softmax%22:f1%20-%3E%20%22matmul1%22:f0;%20label%20=%20%22prev_func%22;%20}%20})
Chainer and Autograd use the similar techniques to record the forward pass. For details, please refer to the appendix.
## Comparison: List v.s. Graph
The list of DyNet could be considered the result of the topological sort of the graph of PyTorch. Or, the graph is the raw representation of the tape, which gives us the chance to *prune* part of the graph that is irrelevant with the backward pass before the topological sort [[2]](https://openreview.net/pdf?id=BJJsrmfCZ). Consider the following example, PyTorch only does backward on `SmallNet` while DyNet does both `SmallNet` and `BigNet`:
```python
result = BigNet(data)
loss = SmallNet(data)
loss.backward()
```
## Lazy v.s. Immediate Evaluation
Another difference between DyNet and PyTorch is that DyNet lazily evaluates the forward pass, whereas PyTorch executes it immediately. Consider the following example:
```python
for epoch in range(num_epochs):
for in_words, out_label in training_data:
dy.renew_cg()
W = dy.parameter(W_p)
b = dy.parameter(b_p)
score_sym = dy.softmax(W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b)
loss_sym = dy.pickneglogsoftmax(score_sym, out_label)
loss_val = loss_sym.value()
loss_sym.backward()
```
The computation of `lookup`, `concat`, `matmul` and `softmax` didn't happen until the call of `loss_sym.value()`. This defered execution is useful because it allows some graph-like optimization possible, e.g. kernel fusion.
PyTorch chooses immediate evaluation. It avoids ever materializing a "forward graph"/"tape" (no need to explicitly call `dy.renew_cg()` to reset the list), recording only what is necessary to differentiate the computation, i.e. `creator` and `prev_func`.
## Fluid: Learning the Lessons
Please refer to `paddle/contrib/dynamic/`.
## Appendix
### Overview
| Framework | Has Tape | Core in C++ | First Release Date |
|-----------|----------|-------------|--------------------|
| Autograd | No | No | Mar 5, 2015 |
| Chainer | No | No | Jun 5, 2015 |
| Pytorch | No | Yes | Aug 31, 2016 |
| Dynet | Yes | Yes | Oct 12, 2016 |
### Source Code
#### Autograd
[Backward code](https://github.com/HIPS/autograd/blob/442205dfefe407beffb33550846434baa90c4de7/autograd/core.py#L8-L40). In the forward pass, a graph of VJPNode is constructed.
```python
# User API
def make_grad(fun, x):
start_node = VJPNode.new_root()
end_value, end_node = trace(start_node, fun, x)
return backward_pass(g, end_node), end_value
# trace the forward pass by creating VJPNodes
def trace(start_node, fun, x):
with trace_stack.new_trace() as t:
start_box = new_box(x, t, start_node)
end_box = fun(start_box)
return end_box._value, end_box._node
def backward_pass(g, end_node):
outgrads = {end_node : (g, False)}
for node in toposort(end_node):
outgrad = outgrads.pop(node)
ingrads = node.vjp(outgrad[0])
for parent, ingrad in zip(node.parents, ingrads):
outgrads[parent] = add_outgrads(outgrads.get(parent), ingrad)
return outgrad[0]
# Every VJPNode corresponds to a op_grad
class VJPNode(Node):
__slots__ = ['parents', 'vjp']
def __init__(self, value, fun, args, kwargs, parent_argnums, parents):
self.parents = parents
vjpmaker = primitive_vjps[fun]
self.vjp = vjpmaker(parent_argnums, value, args, kwargs)
```
#### Chainer
Example Code
```python
# (1) Function Set definition, creates FunctionNode
model = FunctionSet(
l1=F.Linear(784, 100),
l2=F.Linear(100, 100),
l3=F.Linear(100, 10)).to_gpu()
# (2) Optimizer Setup
opt = optimizers.SGD()
opt.setup(model)
# (3) Forward computation
def forward(x, t):
h1 = F.relu(model.l1(x))
h2 = F.relu(model.l2(h1))
y = model.l3(h2)
return F.softmax_cross_entropy(y, t)
# (4) Training loop
for epoch in xrange(n_epoch):
for i in xrange(0, N, b_size):
x = Variable(to_gpu(...))
t = Variable(to_gpu(...))
opt.zero_grads()
loss = forward(x, t)
loss.backward()
opt.update()
```
In `forward(x, t)`, a graph of [`VariableNode`](https://github.com/chainer/chainer/blob/master/chainer/variable.py#L110) and [`FunctionNode`](https://github.com/chainer/chainer/blob/a69103a4aa59d5b318f39b01dbcb858d465b89cf/chainer/function_node.py#L19) is constructed. Every output's `VariableNode.creator` is pointed to the `FunctionNode`.
```python
class FunctionNode(object):
...
def apply(self, inputs):
outputs = self.forward(inputs)
ret = tuple([variable.Variable(y, requires_grad=requires_grad)
for y in outputs])
# Topological ordering
self.rank = max([x.rank for x in inputs]) if input_vars else 0
# Add backward edges
for y in ret:
y.creator_node = self
self.inputs = tuple([x.node for x in input_vars])
self.outputs = tuple([y.node for y in ret])
return ret
```
`loss.backward()` will calculate the accumulated gradient of all variables. All the backward of `FunctionNode`s will be called based on the topological order.
```python
class VariableNode(object):
...
def backward(self, retain_grad, loss_scale):
if self.creator_node is None:
return
cand_funcs = []
seen_set = set()
grads = {}
# Initialize error by 1, if this is a loss variable
if self.data.size == 1 and self._grad_var is None:
self.grad = numpy.ones_like(self.data)
grads[self._node] = self._grad_var
def add_cand(cand):
if cand not in seen_set:
# Negate since heapq is min-heap. This is a global variable
heapq.heappush(cand_funcs, (-cand.rank, len(seen_set), cand))
seen_set.add(cand)
add_cand(self.creator_node)
while cand_funcs:
_, _, func = heapq.heappop(cand_funcs)
gxs = func.backward_accumulate(func.inputs, func.outputs, func.outputs.grad)
for x, gx in enumerate(gxs):
if x in grads:
grads[x] += gx
else:
grads[x] = gx
if x.creator_node is not None:
add_cand(x.creator_node)
```
#### PyTorch
Example Code
```python
x = Variable(torch.ones(5, 5))
y = Variable(torch.ones(5, 5) * 4)
z = x ** 2 + x * 2 + x * y + y
z.backward(torch.ones(5, 5))
```
The trace is done by `Variable.creator` and `Function.previous_functions`.
```python
class Variable(object):
def __init__(self, tensor, creator=None, requires_grad=True):
if creator is None:
creator = Leaf(self, requires_grad)
self.data = tensor
self.creator = creator
self._grad = None
def backward(self, gradient=None):
if gradient is None:
if self.data.numel() != 1:
raise RuntimeError('backward should be called only on a scalar (i.e. 1-element tensor) or with gradient w.r.t. the variable')
gradient = self.data.new(1).fill_(1)
self._execution_engine.run_backward(self, gradient)
class Function(obejct):
# ...
def _do_forward(self, *input):
unpacked_input = tuple(arg.data for arg in input)
raw_output = self.forward(*unpacked_input)
# mark output.creator = self for backward trace
output = tuple(Variable(tensor, self) for tensor in raw_output)
self.previous_functions = [(arg.creator, id(arg)) for arg in input]
self.output_ids = {id(var): i for i, var in enumerate(output)}
return output
def _do_backward(self, grad_output):
return self.backwaerd(grad_output)
```
The [backward](https://github.com/pytorch/pytorch/blob/v0.1.1/torch/autograd/engine.py) is similar to Autograd.
#### DyNet
Example code
```python
model = dy.model()
W_p = model.add_parameters((20, 100))
b_p = model.add_parameters(20)
E = model.add_lookup_parameters((20000, 50))
for epoch in range(num_epochs):
for in_words, out_label in training_data:
dy.renew_cg() # init tape
W = dy.parameter(W_p)
b = dy.parameter(b_p)
score_sym = dy.softmax(W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b)
loss_sym = dy.pickneglogsoftmax(score_sym, out_label)
loss_val = loss_sym.value()
loss_sym.backward()
```
[forward](https://github.com/clab/dynet/blob/740a9626a13a2732544de142e256ad0d0a166658/dynet/exec.cc#L84-L158), [backward](https://github.com/clab/dynet/blob/740a9626a13a2732544de142e256ad0d0a166658/dynet/exec.cc#L166-L284). The trace is done by creating a tape of expressions in every iteration. Backward is done by traverse the tape in the reverse order.
```c++
void SimpleExecutionEngine::backward(VariableIndex from_where, bool full) {
...
for (int i = num_nodes - 1; i >= 0; --i) {
// each node corresponds to an op
node->backward(xs, node_fx, node_dEdfx, ai, node_dEdxai);
}
...
}
```