# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.dygraph as dg class TestKronOp(OpTest): def setUp(self): self.op_type = "kron" self.dtype = self._init_dtype() x = np.random.uniform(size=(10, 10)).astype(self.dtype) y = np.random.uniform(size=(10, 10)).astype(self.dtype) out_ref = np.kron(x, y) self.inputs = {'X': x, 'Y': y} self.outputs = {'Out': out_ref} def _init_dtype(self): return "float64" def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X', 'Y'], 'Out') def test_check_grad_ignore_x(self): self.check_grad(['Y'], 'Out', no_grad_set=set('X')) def test_check_grad_ignore_y(self): self.check_grad(['X'], 'Out', no_grad_set=set('Y')) class TestKronOp2(TestKronOp): def setUp(self): self.op_type = "kron" self.dtype = self._init_dtype() x = np.random.uniform(size=(5, 5, 4)).astype(self.dtype) y = np.random.uniform(size=(10, 10)).astype(self.dtype) out_ref = np.kron(x, y) self.inputs = {'X': x, 'Y': y} self.outputs = {'Out': out_ref} class TestKronOp3(TestKronOp): def setUp(self): self.op_type = "kron" self.dtype = self._init_dtype() x = np.random.uniform(size=(10, 10)).astype(self.dtype) y = np.random.uniform(size=(5, 5, 4)).astype(self.dtype) out_ref = np.kron(x, y) self.inputs = {'X': x, 'Y': y} self.outputs = {'Out': out_ref} class TestKronLayer(unittest.TestCase): def test_case(self): a = np.random.randn(10, 10).astype(np.float64) b = np.random.randn(10, 10).astype(np.float64) place = fluid.CPUPlace() with dg.guard(place): a_var = dg.to_variable(a) b_var = dg.to_variable(b) c_var = paddle.kron(a_var, b_var) np.testing.assert_allclose(c_var.numpy(), np.kron(a, b)) def test_case_with_output(self): a = np.random.randn(10, 10).astype(np.float64) b = np.random.randn(10, 10).astype(np.float64) main = fluid.Program() start = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, start): a_var = fluid.data("a", [-1, -1], dtype="float64") b_var = fluid.data("b", [-1, -1], dtype="float64") out_var = paddle.kron(a_var, b_var) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(start) c, = exe.run(main, feed={'a': a, 'b': b}, fetch_list=[out_var]) np.testing.assert_allclose(c, np.kron(a, b)) if __name__ == '__main__': unittest.main()