// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/new_executor/stream_analyzer.h" #include #include #include "paddle/fluid/platform/device_context.h" namespace paddle { namespace framework { StreamAnalyzer::StreamAnalyzer(const platform::Place& place) : place_(place) { if (platform::is_gpu_place(place)) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) platform::EmplaceDeviceContexts( &d2h_ctxs_, {place}, /*disable_setting_default_stream_for_allocator=*/true); platform::EmplaceDeviceContexts( &h2d_ctxs_, {place}, /*disable_setting_default_stream_for_allocator=*/true); #else PADDLE_THROW( platform::errors::Unimplemented("CUDAPlace is not supported. Please " "re-compile with WITH_GPU option.")); #endif } } /* * Parse the var_ids that need to be associated with an event. * The caller should guarantee front_op and back_op satisfy the * following conditions: * 1. kQueueSync -> kQueueAsync * 2. kQueueAsync -> kQueueSync * * For example: matmul(gpu) -> out_var -> memcpy_d2h * out_var should be associated with an event. * * NOTE(zhiqiu): There are two special case that no event is needed: * 1. the variable is marked as NoDataTransformVar * 2. the variable is marked as NoNeedDataBuffer */ std::vector StreamAnalyzer::GetNeedEventVarIds( const Instruction& cur_instr, const Instruction& next_instr) { std::unordered_set unique_var_ids; for (auto& item : cur_instr.Outputs()) { unique_var_ids.insert(item.second.begin(), item.second.end()); } auto is_no_need_buffer = [&next_instr](std::string name) { auto* op = next_instr.OpBase(); auto& inferer = op->Info().NoNeedBufferVarsInferer(); if (inferer) { auto no_need_buffer_ins = inferer(op->Inputs(), op->Outputs(), op->Attrs()); return no_need_buffer_ins.count(name) != 0; } return false; }; std::vector need_event_var_ids; for (auto& item : next_instr.Inputs()) { for (auto var_id : item.second) { if (unique_var_ids.count(var_id) > 0) { if (next_instr.NoDataTransformVars().count(var_id)) { VLOG(4) << "Skip inserting event at variable " << item.first << " of operator " << next_instr.OpBase()->Type() << " since it is NoDataTransform"; continue; } if (is_no_need_buffer(item.first)) { VLOG(4) << "Skip inserting event at variable " << item.first << " of operator " << next_instr.OpBase()->Type() << " since it is NoNeedBufferVar"; continue; } need_event_var_ids.push_back(var_id); } } } return need_event_var_ids; } void StreamAnalyzer::ConstructEventForVar( const std::vector& new_event_var_id, Instruction* next_instr, platform::DeviceType waiter_type, const platform::Place& place) { for (auto var_id : new_event_var_id) { if (var_id2event_.count(var_id) == 0) { auto device_event = std::make_shared( place, platform::GenerateDeviceEventFlag()); var_id2event_.emplace(var_id, std::move(device_event)); } // Add events for next_instr.inputs next_instr->AddInputEvent(var_id, var_id2event_.at(var_id), waiter_type); } } void StreamAnalyzer::Schedule(const std::vector& downstream_ops, std::vector* instructions, size_t op_index) { auto& cur_instr = instructions->at(op_index); auto& next_instruction = cur_instr.NextInstructions(); std::vector event_var_ids; for (auto next_op_id : downstream_ops) { auto& next_instr = instructions->at(next_op_id); if (IsDirectRun(cur_instr, next_instr)) { VLOG(4) << "DirectRun: " << cur_instr.OpBase()->Type() << "->" << next_instr.OpBase()->Type(); next_instruction.AddDirectRun(next_op_id); } else { // Always insert events between different stream auto need_event_var_ids = GetNeedEventVarIds(cur_instr, next_instr); event_var_ids.insert(event_var_ids.end(), need_event_var_ids.begin(), need_event_var_ids.end()); auto waiter_type = GetWaiterType(next_instr); ConstructEventForVar(need_event_var_ids, &next_instr, waiter_type, cur_instr.DeviceContext().GetPlace()); if (waiter_type == platform::kCPU) { // GPU -> CPU VLOG(4) << "SyncRun: " << cur_instr.OpBase()->Type() << "->" << next_instr.OpBase()->Type(); next_instruction.AddSyncRun(next_op_id); } else { // GPU -> GPU(different stream) VLOG(4) << "EventRun: " << cur_instr.OpBase()->Type() << "->" << next_instr.OpBase()->Type(); next_instruction.ADDEventRun(next_op_id); } } } // Create events for these cross-stream vars VLOG(3) << cur_instr.OpBase()->Type() << " event_var_ids.size: " << event_var_ids.size(); for (auto var_id : event_var_ids) { cur_instr.AddOutputEvent(var_id, var_id2event_.at(var_id), platform::kCUDA /*not used*/); } } platform::DeviceContext* StreamAnalyzer::ParseDeviceContext( const OpFuncNode& op_func_node) { auto& op_type = op_func_node.operator_base_->Type(); auto* dev_ctx = op_func_node.dev_ctx_; if (op_type == interpreter::kMemcpyD2H) { VLOG(3) << "Get dev_ctx from d2h_context_pool_"; dev_ctx = d2h_ctxs_[place_].get().get(); } else if (op_type == interpreter::kMemcpyH2D) { VLOG(3) << "Get dev_ctx from h2d_context_pool_"; dev_ctx = h2d_ctxs_[place_].get().get(); } return dev_ctx; } /* * NOTE(dev): The following cases are considered as directly run: * * 1. with same dev_ctx_, such as: CPU -> CPU, GPU -> GPU * 2. CPU -> any (it is possible: CPU op->VAR->GPU op, when var is no need * buffer or no need data transform) * 3. D2H -> CPU * 4. CPU -> H2D */ bool StreamAnalyzer::IsDirectRun(Instruction& cur_instr, const Instruction& next_instr) { return (&cur_instr.DeviceContext() == &next_instr.DeviceContext() || interpreter::IsCpuOp(cur_instr) || interpreter::IsMemcpyD2H(cur_instr) || interpreter::IsMemcpyH2D(next_instr)); } platform::DeviceType StreamAnalyzer::GetWaiterType(const Instruction& instr) { if (instr.KernelType() == OpFuncType::kQueueSync) { return platform::kCPU; } else { return platform::kCUDA; } } } // namespace framework } // namespace paddle