# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn from paddle.static import InputSpec from collections import OrderedDict __all__ = ['summary'] def summary(net, input_size, batch_size=None, dtypes=None): """Prints a string summary of the network. Args: net (Layer): the network which must be a subinstance of Layer. input_size (tuple|InputSpec|list[tuple|InputSpec]): size of input tensor. if model only have one input, input_size can be tuple or InputSpec. if model have multiple input, input_size must be a list which contain every input's shape. batch_size (int, optional): batch size of input tensor, Default: None. dtypes (str, optional): if dtypes is None, 'float32' will be used, Default: None. Returns: Dict: a summary of the network including total params and total trainable params. Examples: .. code-block:: python import paddle import paddle.nn as nn class LeNet(nn.Layer): def __init__(self, num_classes=10): super(LeNet, self).__init__() self.num_classes = num_classes self.features = nn.Sequential( nn.Conv2d( 1, 6, 3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2), nn.Conv2d( 6, 16, 5, stride=1, padding=0), nn.ReLU(), nn.MaxPool2d(2, 2)) if num_classes > 0: self.fc = nn.Sequential( nn.Linear(400, 120), nn.Linear(120, 84), nn.Linear( 84, 10)) def forward(self, inputs): x = self.features(inputs) if self.num_classes > 0: x = paddle.flatten(x, 1) x = self.fc(x) return x lenet = LeNet() params_info = paddle.summary(lenet, (1, 28, 28)) print(params_info) """ if isinstance(input_size, InputSpec): _input_size = tuple(input_size.shape[1:]) if batch_size is None: batch_size = input_size.shape[0] elif isinstance(input_size, list): _input_size = [] for item in input_size: assert isinstance(item, (list, InputSpec)), 'When input_size is list, \ expect item in input_size is a tuple or InputSpec, but got {}'.format( type(item)) if isinstance(item, InputSpec): _input_size.append(tuple(item.shape[1:])) if batch_size is None: batch_size = item.shape[0] else: _input_size.append(item) else: _input_size = input_size if batch_size is None: batch_size = -1 result, params_info = summary_string(net, _input_size, batch_size, dtypes) print(result) return params_info def summary_string(model, input_size, batch_size=-1, dtypes=None): if dtypes == None: dtypes = ['float32'] * len(input_size) summary_str = '' depth = len(list(model.sublayers())) def register_hook(module): def hook(module, input, output): class_name = str(module.__class__).split(".")[-1].split("'")[0] try: module_idx = int(module._full_name.split('_')[-1]) except: module_idx = len(summary) m_key = "%s-%i" % (class_name, module_idx + 1) summary[m_key] = OrderedDict() summary[m_key]["input_shape"] = list(input[0].shape) summary[m_key]["input_shape"][0] = batch_size if isinstance(output, (list, tuple)): summary[m_key]["output_shape"] = [[-1] + list(o.shape)[1:] for o in output] else: summary[m_key]["output_shape"] = list(output.shape) summary[m_key]["output_shape"][0] = batch_size params = 0 if hasattr(module, "weight"): params += np.prod(module.weight.shape) summary[m_key]["trainable"] = module.weight.trainable or ( not module.weight.stop_gradient) if hasattr(module, "bias"): params += np.prod(module.bias.shape) summary[m_key]["nb_params"] = params if (not isinstance(module, nn.Sequential) and not isinstance(module, nn.LayerList) and (not (module == model) or depth < 1)): hooks.append(module.register_forward_post_hook(hook)) if isinstance(input_size, tuple): input_size = [input_size] x = [ paddle.rand( [2] + list(in_size), dtype=dtype) for in_size, dtype in zip(input_size, dtypes) ] # create properties summary = OrderedDict() hooks = [] # register hook model.apply(register_hook) # make a forward pass model(*x) # remove these hooks for h in hooks: h.remove() table_width = 80 summary_str += "-" * table_width + "\n" line_new = "{:>15} {:>20} {:>20} {:>15}".format( "Layer (type)", "Input Shape", "Output Shape", "Param #") summary_str += line_new + "\n" summary_str += "=" * table_width + "\n" total_params = 0 total_output = 0 trainable_params = 0 for layer in summary: # input_shape, output_shape, trainable, nb_params line_new = "{:>15} {:>20} {:>20} {:>15}".format( layer, str(summary[layer]["input_shape"]), str(summary[layer]["output_shape"]), "{0:,}".format(summary[layer]["nb_params"]), ) total_params += summary[layer]["nb_params"] total_output += np.prod(summary[layer]["output_shape"]) if "trainable" in summary[layer]: if summary[layer]["trainable"] == True: trainable_params += summary[layer]["nb_params"] summary_str += line_new + "\n" # assume 4 bytes/number (float on cuda). total_input_size = abs( np.prod(sum(input_size, ())) * batch_size * 4. / (1024**2.)) total_output_size = abs(2. * total_output * 4. / (1024**2.)) # x2 for gradients total_params_size = abs(total_params * 4. / (1024**2.)) total_size = total_params_size + total_output_size + total_input_size summary_str += "=" * table_width + "\n" summary_str += "Total params: {0:,}".format(total_params) + "\n" summary_str += "Trainable params: {0:,}".format(trainable_params) + "\n" summary_str += "Non-trainable params: {0:,}".format(total_params - trainable_params) + "\n" summary_str += "-" * table_width + "\n" summary_str += "Input size (MB): %0.2f" % total_input_size + "\n" summary_str += "Forward/backward pass size (MB): %0.2f" % total_output_size + "\n" summary_str += "Params size (MB): %0.2f" % total_params_size + "\n" summary_str += "Estimated Total Size (MB): %0.2f" % total_size + "\n" summary_str += "-" * table_width + "\n" # return summary return summary_str, { 'total_params': total_params, 'trainable_params': trainable_params }