// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/data_layout_transform.h" #include #include #include "paddle/fluid/operators/math/math_function.h" #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/platform/mkldnn_reuse.h" #endif namespace paddle { namespace framework { std::vector GetAxis(const DataLayout& from, const DataLayout& to) { PADDLE_ENFORCE_NE(from, to, "layout transform should transform different layout"); if (from == DataLayout::kNCHW && to == DataLayout::kNHWC) { return {0, 2, 3, 1}; } else if (from == DataLayout::kNHWC && to == DataLayout::kNCHW) { return {0, 3, 1, 2}; } else { PADDLE_THROW("unsupported transform"); } } struct CastDataLayout { CastDataLayout(const platform::DeviceContext* ctx, const std::vector& axis, const framework::Tensor& in, framework::Tensor* out) : in_(in), out_(out), ctx_(ctx), axis_(axis) {} const framework::Tensor in_; framework::Tensor* out_; const platform::DeviceContext* ctx_; const std::vector axis_; template void apply() { auto place = ctx_->GetPlace(); if (platform::is_cpu_place(place)) { operators::math::Transpose trans4; auto* context = static_cast(ctx_); trans4(*context, in_, out_, axis_); } else { PADDLE_THROW("Unsupport CPU <-> GPU!"); } } }; void TransDataLayout(const OpKernelType& kernel_type_for_var, const OpKernelType& expected_kernel_type, const Tensor& in, Tensor* out) { PADDLE_ENFORCE( platform::places_are_same_class(kernel_type_for_var.place_, expected_kernel_type.place_), "TransDataLayout only support DataLayout transform on same place!"); PADDLE_ENFORCE(arity(in.dims()) == 4, "Input Arity only support 4!"); auto& pool = platform::DeviceContextPool::Instance(); auto src_dim = in.dims(); std::vector dst_dim; auto axis = GetAxis(kernel_type_for_var.data_layout_, expected_kernel_type.data_layout_); dst_dim.resize(axis.size()); for (size_t i = 0; i < axis.size(); i++) { dst_dim[i] = src_dim[axis[i]]; } out->Resize(make_ddim(dst_dim)); out->mutable_data(expected_kernel_type.place_, in.type()); framework::VisitDataType( in.type(), CastDataLayout(pool.Get(expected_kernel_type.place_), axis, in, out)); out->set_layout(expected_kernel_type.data_layout_); } #ifdef PADDLE_WITH_MKLDNN using mkldnn::memory; using mkldnn::primitive; using mkldnn::reorder; void* GetDataFromTensor(const Tensor& tensor, mkldnn::memory::data_type type) { switch (type) { case mkldnn::memory::data_type::f32: return platform::to_void_cast(tensor.data()); case mkldnn::memory::data_type::s8: return platform::to_void_cast(tensor.data()); case mkldnn::memory::data_type::u8: return platform::to_void_cast(tensor.data()); case mkldnn::memory::data_type::s16: return platform::to_void_cast(tensor.data()); case mkldnn::memory::data_type::s32: return platform::to_void_cast(tensor.data()); default: PADDLE_THROW("wrong mkldnn type provided"); } } #endif void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var, const OpKernelType& expected_kernel_type, const Tensor& in, Tensor* out) { auto in_layout = kernel_type_for_var.data_layout_; auto out_layout = expected_kernel_type.data_layout_; auto place = expected_kernel_type.place_; PADDLE_ENFORCE( in_layout == DataLayout::kMKLDNN && out_layout != DataLayout::kMKLDNN, "TransDataLayoutFromMKLDNN only supports transform from MKLDNN to " "non-MKLDNN"); innerTransDataLayoutFromMKLDNN(in_layout, out_layout, in, out, place); } void innerTransDataLayoutFromMKLDNN(DataLayout in_layout, DataLayout out_layout, const Tensor& in, Tensor* out, platform::Place place) { #ifdef PADDLE_WITH_MKLDNN PADDLE_ENFORCE_NE(in.format(), MKLDNNMemoryFormat::format_undef, "Input tensor should have specified memory format"); PADDLE_ENFORCE_NE(in.format(), MKLDNNMemoryFormat::any, "Input tensor should have specified memory format"); // Set default as NCHW in case not specified out_layout = out_layout == DataLayout::kAnyLayout ? DataLayout::kNCHW : out_layout; auto& pool = platform::DeviceContextPool::Instance(); auto* dev_ctx = dynamic_cast(pool.Get(place)); auto& cpu_engine = dev_ctx->GetEngine(); auto in_tz = paddle::framework::vectorize(in.dims()); auto out_tz = in_tz; memory::data_type in_type = ToMKLDNNDataType(in.type()); PADDLE_ENFORCE(in_type != memory::data_type::data_undef, "Input tensor type is not supported: %s", in.type()); auto in_format = platform::MKLDNNFormatForSize(in_tz.size(), in.format()); auto out_format = platform::MKLDNNFormatForSize(in_tz.size(), ToMKLDNNFormat(out_layout)); // output tensor has the same dims as input. Reorder don't change dims out->Resize(in.dims()); if (in_format != out_format) { void* in_data = GetDataFromTensor(in, in_type); const std::string key = platform::ReorderMKLDNNHandler::GetHash( in_tz, in_format, out_format, std::to_string(in_type)); platform::ReorderMKLDNNHandler handler(in_tz, in.type(), in_type, *dev_ctx, cpu_engine, key); auto reorder_src_memory_p = handler.AcquireSrcMemory(in_format, in_data); auto reorder_dst_memory_p = handler.AcquireDstMemory(out, out_format, place); auto reorder_p = handler.AcquireReorder(reorder_dst_memory_p, reorder_src_memory_p); std::vector pipeline; pipeline.push_back(*reorder_p); mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); } else { out->ShareDataWith(in); } out->set_layout(out_layout); // reset format since the out tensor will be feed to non-MKLDNN OPkernel out->set_format(MKLDNNMemoryFormat::format_undef); #endif } } // namespace framework } // namespace paddle