# copyright (c) 2019 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. import unittest import os import numpy as np import time import sys import random import functools import contextlib from PIL import Image, ImageEnhance import math from paddle.dataset.common import download random.seed(0) np.random.seed(0) DATA_DIM = 224 SIZE_FLOAT32 = 4 SIZE_INT64 = 8 img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) def resize_short(img, target_size): percent = float(target_size) / min(img.size[0], img.size[1]) resized_width = int(round(img.size[0] * percent)) resized_height = int(round(img.size[1] * percent)) img = img.resize((resized_width, resized_height), Image.LANCZOS) return img def crop_image(img, target_size, center): width, height = img.size size = target_size if center == True: w_start = (width - size) / 2 h_start = (height - size) / 2 else: w_start = np.random.randint(0, width - size + 1) h_start = np.random.randint(0, height - size + 1) w_end = w_start + size h_end = h_start + size img = img.crop((w_start, h_start, w_end, h_end)) return img def process_image(img_path, mode, color_jitter, rotate): img = Image.open(img_path) img = resize_short(img, target_size=256) img = crop_image(img, target_size=DATA_DIM, center=True) if img.mode != 'RGB': img = img.convert('RGB') img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255 img -= img_mean img /= img_std return img def download_unzip(): int8_download = 'int8/download' target_name = 'data' cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' + int8_download) target_folder = os.path.join(cache_folder, target_name) data_urls = [] data_md5s = [] data_urls.append( 'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa' ) data_md5s.append('60f6525b0e1d127f345641d75d41f0a8') data_urls.append( 'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab' ) data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5') file_names = [] for i in range(0, len(data_urls)): download(data_urls[i], cache_folder, data_md5s[i]) file_names.append(data_urls[i].split('/')[-1]) zip_path = os.path.join(cache_folder, 'full_imagenet_val.tar.gz') if not os.path.exists(zip_path): cat_command = 'cat' for file_name in file_names: cat_command += ' ' + os.path.join(cache_folder, file_name) cat_command += ' > ' + zip_path os.system(cat_command) print('Data is downloaded at {0}\n').format(zip_path) if not os.path.exists(target_folder): cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder, zip_path) os.system(cmd) print('Data is unzipped at {0}\n'.format(target_folder)) data_dir = os.path.join(target_folder, 'ILSVRC2012') print('ILSVRC2012 full val set at {0}\n'.format(data_dir)) return data_dir def reader(): data_dir = download_unzip() file_list = os.path.join(data_dir, 'val_list.txt') output_file = os.path.join(data_dir, 'int8_full_val.bin') with open(file_list) as flist: lines = [line.strip() for line in flist] num_images = len(lines) if not os.path.exists(output_file): print( 'Preprocessing to binary file......\n' ) with open(output_file, "w+b") as of: #save num_images(int64_t) to file of.seek(0) num = np.array(int(num_images)).astype('int64') of.write(num.tobytes()) for idx, line in enumerate(lines): img_path, label = line.split() img_path = os.path.join(data_dir, img_path) if not os.path.exists(img_path): continue #save image(float32) to file img = process_image( img_path, 'val', color_jitter=False, rotate=False) np_img = np.array(img) of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 * idx) of.write(np_img.astype('float32').tobytes()) #save label(int64_t) to file label_int = (int)(label) np_label = np.array(label_int) of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 * num_images + idx * SIZE_INT64) of.write(np_label.astype('int64').tobytes()) print('The preprocessed binary file path {}\n'.format(output_file)) if __name__ == '__main__': reader()