# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from paddle.fluid import core from paddle.fluid.dygraph import to_variable from paddle.fluid.framework import _varbase_creator, _dygraph_tracer, dygraph_only from paddle.fluid.data_feeder import check_type from ...wrapped_decorator import signature_safe_contextmanager, wrap_decorator import warnings import numpy as np __all__ = ['AmpScaler'] class AmpScaler(object): """ :api_attr: imperative AmpScaler is used for Auto-Mixed-Precision training/inferring in imperative mode. It controls the scaling of loss, helps avoiding numerical overflow. The object of this class has two methods `scale()`, `minimize()`. `scale()` is used to multiply the loss by a scale ratio. `minimize()` is similar as `Optimizer.minimize()`, performs parameters updating. Commonly, it is used together with `amp_guard` to achieve Auto-Mixed-Precision in imperative mode. Args: enable(bool, optional): Enable loss scaling or not. Default is True. init_loss_scaling (float, optional): The initial loss scaling factor. Default is 2**15. incr_ratio(float, optional): The multiplier to use when increasing the loss scaling. Default is 2.0. decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing the loss scaling. Default is 0.5. incr_every_n_steps(int, optional): Increases loss scaling every n consecutive steps with finite gradients. Default is 1000. decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default is 2. use_dynamic_loss_scaling(bool, optional): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True. Returns: An AmpScaler object. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32') with fluid.dygraph.guard(): model = fluid.dygraph.Conv2D(3, 2, 3) optimizer = fluid.optimizer.SGDOptimizer( learning_rate=0.01, parameter_list=model.parameters()) scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024) data = fluid.dygraph.to_variable(data) with fluid.dygraph.amp_guard(): conv = model(data) loss = fluid.layers.reduce_mean(conv) scaled = scaler.scale(loss) scaled.backward() scaler.minimize(optimizer, scaled) """ @dygraph_only def __init__(self, enable=True, init_loss_scaling=2.**15, incr_ratio=2.0, decr_ratio=0.5, incr_every_n_steps=1000, decr_every_n_nan_or_inf=1, use_dynamic_loss_scaling=True): tracer = _dygraph_tracer() if not tracer: raise ValueError( "current_tracer is None, maybe it is not in imperative mode.") if enable and not tracer._expected_place.is_gpu_place(): warnings.warn( 'AmpScaler can only be enabled on CUDAPlace, current place is %s, so it makes no effect.' % tracer._expected_place) enable = False self._enable = enable if self._enable: assert incr_ratio > 1.0, "The incr_ratio must be > 1.0." assert decr_ratio < 1.0, "The decr_ratio must be < 1.0." self._init_loss_scaling = init_loss_scaling self._incr_ratio = incr_ratio self._decr_ratio = decr_ratio self._incr_every_n_steps = incr_every_n_steps self._decr_every_n_nan_or_inf = decr_every_n_nan_or_inf self._incr_count = 0 self._decr_count = 0 self._use_dynamic_loss_scaling = use_dynamic_loss_scaling self._found_inf = to_variable(np.array([0]).astype(np.bool)) self._scale = to_variable( np.array([self._init_loss_scaling]).astype(np.float32)) self._cache_founf_inf = None def scale(self, var): """ Multiplies a variable(Tensor) by the scale factor and returns scaled outputs. If this instance of :class:`AmpScaler` is not enabled, output are returned unmodified. Args: var (Variable): The variable to scale. Returns: The scaled variable or original variable. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32') with fluid.dygraph.guard(): model = fluid.dygraph.Conv2D(3, 2, 3) optimizer = fluid.optimizer.SGDOptimizer( learning_rate=0.01, parameter_list=model.parameters()) scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024) data = fluid.dygraph.to_variable(data) with fluid.dygraph.amp_guard(): conv = model(data) loss = fluid.layers.reduce_mean(conv) scaled = scaler.scale(loss) scaled.backward() scaler.minimize(optimizer, scaled) """ check_type(var, "var", core.VarBase, 'AmpScaler.scale()') if not self._enable: return var return var * self._scale def minimize(self, optimizer, *args, **kwargs): """ This function is similar as `Optimizer.minimize()`, which performs parameters updating. If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped. Otherwise, it first unscales the scaled gradients of parameters, then updates the parameters. Finally, the loss scaling ratio is updated. Args: optimizer(Optimizer): The optimizer used to update parameters. args: Arguments, which will be forward to `optimizer.minimize()`. kwargs: Keyword arguments, which will be forward to `Optimizer.minimize()`. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32') with fluid.dygraph.guard(): model = fluid.dygraph.Conv2D(3, 2, 3) optimizer = fluid.optimizer.SGDOptimizer( learning_rate=0.01, parameter_list=model.parameters()) scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024) data = fluid.dygraph.to_variable(data) with fluid.dygraph.amp_guard(): conv = model(data) loss = fluid.layers.reduce_mean(conv) scaled = scaler.scale(loss) scaled.backward() scaler.minimize(optimizer, scaled) """ if not self._enable: return optimizer.minimize(*args, **kwargs) # unscale the grad self._unscale(optimizer) optimize_ops, params_grads = (None, None) if self._found_inf: self._cache_founf_inf = True else: optimize_ops, params_grads = optimizer.minimize(*args, **kwargs) self._cache_founf_inf = False if self._use_dynamic_loss_scaling: # uopdate the scale self._update() return optimize_ops, params_grads def _unscale(self, optimizer): if not self._enable: return param_grads = [ param._grad_ivar() for param in optimizer._parameter_list if param._grad_ivar() is not None ] core.ops.check_finite_and_unscale(param_grads, self._scale, param_grads, self._found_inf) def _update(self): """ Updates the loss_scaling. """ if not self._enable: return if self._cache_founf_inf: self._incr_count = 0 self._decr_count = self._decr_count + 1 if self._decr_count == self._decr_every_n_nan_or_inf: print( 'Found inf or nan, current scale is: {}, decrease to: {}*{}'. format( float(self._scale), float(self._scale), float(self._decr_ratio))) self._scale = self._scale * self._decr_ratio self._decr_count = 0 else: self._decr_count = 0 self._incr_count = self._incr_count + 1 if self._incr_count == self._incr_every_n_steps: self._scale = self._scale * self._incr_ratio self._incr_count = 0 return