// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include // NOLINT #include #include #ifdef WITH_GPERFTOOLS #include #endif #include "paddle/fluid/framework/ir/fuse_pass_base.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/inference/analysis/analyzer.h" #include "paddle/fluid/inference/analysis/ut_helper.h" #include "paddle/fluid/inference/api/analysis_predictor.h" #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_inference_pass.h" #include "paddle/fluid/inference/tests/api/config_printer.h" #include "paddle/fluid/inference/tests/test_helper.h" #include "paddle/fluid/inference/utils/benchmark.h" #include "paddle/fluid/platform/profiler.h" DEFINE_string(model_name, "", "model name"); DEFINE_string(infer_model, "", "model path"); DEFINE_string(infer_data, "", "data file"); DEFINE_string(refer_result, "", "reference result for comparison"); DEFINE_int32(batch_size, 1, "batch size"); DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup"); // setting iterations to 0 means processing the whole dataset DEFINE_int32(iterations, 0, "number of batches to process"); DEFINE_int32(repeat, 1, "Running the inference program repeat times."); DEFINE_bool(test_all_data, false, "Test the all dataset in data file."); DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads."); DEFINE_bool(use_analysis, true, "Running the inference program in analysis mode."); DEFINE_bool(record_benchmark, false, "Record benchmark after profiling the model"); DEFINE_double(accuracy, 1e-3, "Result Accuracy."); DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy."); DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch."); DEFINE_bool(warmup, false, "Use warmup to calculate elapsed_time more accurately. " "To reduce CI time, it sets false in default."); DECLARE_bool(profile); DECLARE_int32(paddle_num_threads); namespace paddle { namespace inference { using paddle::framework::proto::VarType; template constexpr paddle::PaddleDType GetPaddleDType(); template <> constexpr paddle::PaddleDType GetPaddleDType() { return paddle::PaddleDType::INT64; } template <> constexpr paddle::PaddleDType GetPaddleDType() { return paddle::PaddleDType::FLOAT32; } void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) { const auto *analysis_config = reinterpret_cast(config); if (use_analysis) { LOG(INFO) << *analysis_config; return; } LOG(INFO) << analysis_config->ToNativeConfig(); } // Compare result between two PaddleTensor void CompareResult(const std::vector &outputs, const std::vector &ref_outputs) { EXPECT_GT(outputs.size(), 0UL); EXPECT_EQ(outputs.size(), ref_outputs.size()); for (size_t i = 0; i < outputs.size(); i++) { auto &out = outputs[i]; auto &ref_out = ref_outputs[i]; size_t size = VecReduceToInt(out.shape); size_t ref_size = VecReduceToInt(ref_out.shape); EXPECT_GT(size, 0UL); EXPECT_EQ(size, ref_size); EXPECT_EQ(out.dtype, ref_out.dtype); switch (out.dtype) { case PaddleDType::INT64: { int64_t *pdata = static_cast(out.data.data()); int64_t *pdata_ref = static_cast(ref_out.data.data()); for (size_t j = 0; j < size; ++j) { EXPECT_EQ(pdata_ref[j], pdata[j]); } break; } case PaddleDType::FLOAT32: { float *pdata = static_cast(out.data.data()); float *pdata_ref = static_cast(ref_out.data.data()); for (size_t j = 0; j < size; ++j) { CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy); } break; } case PaddleDType::INT32: { int32_t *pdata = static_cast(out.data.data()); int32_t *pdata_ref = static_cast(ref_out.data.data()); for (size_t j = 0; j < size; ++j) { EXPECT_EQ(pdata_ref[j], pdata[j]); } break; } } } } // Compare result between a PaddleTensor and a ZeroCopyTensor void CompareResult(const std::vector &outputs, const std::vector &ref_outputs) { EXPECT_GT(outputs.size(), 0UL); EXPECT_EQ(outputs.size(), ref_outputs.size()); for (size_t i = 0; i < outputs.size(); i++) { auto &out = outputs[i]; auto &ref_out = ref_outputs[i]; size_t size = VecReduceToInt(out.shape); EXPECT_GT(size, 0UL); int ref_size = 0; // this is the number of elements not memory size PaddlePlace place; switch (out.dtype) { case PaddleDType::INT64: { int64_t *pdata = static_cast(out.data.data()); int64_t *pdata_ref = ref_out.data(&place, &ref_size); EXPECT_EQ(size, static_cast(ref_size)); for (size_t j = 0; j < size; ++j) { EXPECT_EQ(pdata_ref[j], pdata[j]); } break; } case PaddleDType::FLOAT32: { float *pdata = static_cast(out.data.data()); float *pdata_ref = ref_out.data(&place, &ref_size); EXPECT_EQ(size, ref_size); for (size_t j = 0; j < size; ++j) { CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy); } break; } case PaddleDType::INT32: { int32_t *pdata = static_cast(out.data.data()); int32_t *pdata_ref = ref_out.data(&place, &ref_size); EXPECT_EQ(size, ref_size); for (size_t j = 0; j < size; ++j) { EXPECT_EQ(pdata_ref[j], pdata[j]); } break; } } } } std::unique_ptr CreateTestPredictor( const PaddlePredictor::Config *config, bool use_analysis = true) { const auto *analysis_config = reinterpret_cast(config); if (use_analysis) { return CreatePaddlePredictor(*analysis_config); } auto native_config = analysis_config->ToNativeConfig(); return CreatePaddlePredictor(native_config); } size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); } std::unordered_map GetFuseStatis(PaddlePredictor *predictor, int *num_ops) { std::unordered_map res; auto *analysis_predictor = static_cast(predictor); auto *fusion_status = analysis_predictor->analysis_argument().fusion_statis_ptr(); if (!fusion_status) { return res; } for (auto &item : *fusion_status) { LOG(INFO) << "fused " << item.first << " " << item.second; } int num = 0; for (auto &node : analysis_predictor->analysis_argument().main_graph().Nodes()) { if (node->IsOp()) { ++num; } } *num_ops = num; return *fusion_status; } void SetFakeImageInput(std::vector> *inputs, const std::string &dirname, bool is_combined = true, std::string model_filename = "model", std::string params_filename = "params", const std::vector *feed_names = nullptr, const int continuous_inuput_index = 0) { // Set fake_image_data PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data."); std::vector> feed_target_shapes = GetFeedTargetShapes( dirname, is_combined, model_filename, params_filename); std::ostringstream os; for (size_t i = 0; i < feed_target_shapes.size(); ++i) { os << "feed target " << i << ": {" << feed_target_shapes[i][0]; for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) { os << ", " << feed_target_shapes[i][j]; } os << "}\n"; } LOG(INFO) << os.str(); if (feed_names) { PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size()); } std::vector input_slots(feed_target_shapes.size()); for (size_t i = 0; i < feed_target_shapes.size(); ++i) { const auto &feed_shape = feed_target_shapes[i]; auto &input = input_slots[i]; std::vector shape({FLAGS_batch_size}); for (size_t s = 1; s < feed_shape.size(); ++s) { shape.push_back(static_cast(feed_shape[s])); } if (feed_names) { input.name = (*feed_names)[i]; } input.shape = shape; input.dtype = PaddleDType::FLOAT32; size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1}, [](int a, int b) { return a * b; }); input.data.Resize(len * sizeof(float)); input.lod.assign({{0, static_cast(FLAGS_batch_size)}}); float *input_data = static_cast(input.data.data()); // fill input data, for profile easily, do not use random data here. for (size_t j = 0; j < len; ++j) { *(input_data + j) = static_cast((j + continuous_inuput_index) % len) / len; } } (*inputs).emplace_back(input_slots); } void GetInputPerBatch(const std::vector> &in, std::vector> *out, std::vector *lod, size_t batch_iter, size_t batch_end) { lod->clear(); lod->push_back(0); for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) { out->push_back(*it); lod->push_back(lod->back() + (*it).size()); // calculate lod } } void ConvertPaddleTensorToZeroCopyTensor( PaddlePredictor *predictor, const std::vector &inputs) { for (size_t i = 0; i < inputs.size(); i++) { auto input = inputs[i]; auto tensor = predictor->GetInputTensor(input.name); tensor->Reshape(input.shape); tensor->SetLoD({input.lod}); if (input.dtype == PaddleDType::INT64) { ZeroCopyTensorAssignData(tensor.get(), input.data); } else if (input.dtype == PaddleDType::FLOAT32) { ZeroCopyTensorAssignData(tensor.get(), input.data); } else if (input.dtype == PaddleDType::INT32) { ZeroCopyTensorAssignData(tensor.get(), input.data); } else { LOG(ERROR) << "unsupported feed type " << input.dtype; } } } void PredictionWarmUp(PaddlePredictor *predictor, const std::vector> &inputs, std::vector> *outputs, int num_threads, int tid, const VarType::Type data_type = VarType::FP32) { int batch_size = FLAGS_batch_size; LOG(INFO) << "Running thread " << tid << ", warm up run..."; if (FLAGS_zero_copy) { ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]); } outputs->resize(1); Timer warmup_timer; warmup_timer.tic(); if (!FLAGS_zero_copy) { predictor->Run(inputs[0], &(*outputs)[0], batch_size); } else { predictor->ZeroCopyRun(); } PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1, data_type); if (FLAGS_profile) { paddle::platform::ResetProfiler(); } } void PredictionRun(PaddlePredictor *predictor, const std::vector> &inputs, std::vector> *outputs, int num_threads, int tid, const VarType::Type data_type = VarType::FP32, float *sample_latency = nullptr) { int num_times = FLAGS_repeat; int iterations = inputs.size(); // process the whole dataset ... if (FLAGS_iterations > 0 && FLAGS_iterations < static_cast(inputs.size())) iterations = FLAGS_iterations; // ... unless the number of iterations is set outputs->resize(iterations); LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads << ", run " << num_times << " times..."; Timer run_timer; double elapsed_time = 0; #ifdef WITH_GPERFTOOLS ProfilerStart("paddle_inference.prof"); #endif int predicted_num = 0; if (!FLAGS_zero_copy) { for (int i = 0; i < iterations; i++) { run_timer.tic(); for (int j = 0; j < num_times; j++) { predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size); } elapsed_time += run_timer.toc(); predicted_num += FLAGS_batch_size; if (predicted_num % 100 == 0) { LOG(INFO) << predicted_num << " samples"; } } } else { for (int i = 0; i < iterations; i++) { ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]); run_timer.tic(); for (int j = 0; j < num_times; j++) { predictor->ZeroCopyRun(); } elapsed_time += run_timer.toc(); predicted_num += FLAGS_batch_size; if (predicted_num % 100 == 0) { LOG(INFO) << predicted_num << " samples"; } } } #ifdef WITH_GPERFTOOLS ProfilerStop(); #endif auto batch_latency = elapsed_time / (iterations * num_times); PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency, iterations, data_type); if (sample_latency != nullptr) *sample_latency = batch_latency / FLAGS_batch_size; if (FLAGS_record_benchmark) { Benchmark benchmark; benchmark.SetName(FLAGS_model_name); benchmark.SetBatchSize(FLAGS_batch_size); benchmark.SetLatency(batch_latency); benchmark.PersistToFile("benchmark_record.txt"); } } void TestOneThreadPrediction( const PaddlePredictor::Config *config, const std::vector> &inputs, std::vector> *outputs, bool use_analysis = true, const VarType::Type data_type = VarType::FP32, float *sample_latency = nullptr) { auto predictor = CreateTestPredictor(config, use_analysis); if (FLAGS_warmup) { PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type); } PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type, sample_latency); } void TestMultiThreadPrediction( const PaddlePredictor::Config *config, const std::vector> &inputs, std::vector> *outputs, int num_threads, bool use_analysis = true) { std::vector threads; std::vector> predictors; predictors.emplace_back(CreateTestPredictor(config, use_analysis)); for (int tid = 1; tid < num_threads; tid++) { predictors.emplace_back(predictors.front()->Clone()); } for (int tid = 0; tid < num_threads; ++tid) { threads.emplace_back([&, tid]() { // Each thread should have local inputs and outputs. // The inputs of each thread are all the same. std::vector> outputs_tid; auto &predictor = predictors[tid]; if (FLAGS_warmup) { PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads, tid); } PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid); }); } for (int i = 0; i < num_threads; ++i) { threads[i].join(); } } void TestPrediction(const PaddlePredictor::Config *config, const std::vector> &inputs, std::vector> *outputs, int num_threads, bool use_analysis = FLAGS_use_analysis) { PrintConfig(config, use_analysis); if (num_threads == 1) { TestOneThreadPrediction(config, inputs, outputs, use_analysis); } else { TestMultiThreadPrediction(config, inputs, outputs, num_threads, use_analysis); } } void SummarizeAccuracy(float avg_acc1_fp32, float avg_acc1_int8) { LOG(INFO) << "--- Accuracy summary --- "; LOG(INFO) << "Accepted top1 accuracy drop threshold: " << FLAGS_quantized_accuracy << ". (condition: (FP32_top1_acc - INT8_top1_acc) <= threshold)"; LOG(INFO) << "FP32: avg top1 accuracy: " << std::fixed << std::setw(6) << std::setprecision(4) << avg_acc1_fp32; LOG(INFO) << "INT8: avg top1 accuracy: " << std::fixed << std::setw(6) << std::setprecision(4) << avg_acc1_int8; } void SummarizePerformance(float sample_latency_fp32, float sample_latency_int8) { // sample latency in ms auto throughput_fp32 = 1000.0 / sample_latency_fp32; auto throughput_int8 = 1000.0 / sample_latency_int8; LOG(INFO) << "--- Performance summary --- "; LOG(INFO) << "FP32: avg fps: " << std::fixed << std::setw(6) << std::setprecision(4) << throughput_fp32 << ", avg latency: " << sample_latency_fp32 << " ms"; LOG(INFO) << "INT8: avg fps: " << std::fixed << std::setw(6) << std::setprecision(4) << throughput_int8 << ", avg latency: " << sample_latency_int8 << " ms"; } void CompareTopAccuracy( const std::vector> &output_slots_quant, const std::vector> &output_slots_ref) { if (output_slots_quant.size() == 0 || output_slots_ref.size() == 0) throw std::invalid_argument( "CompareTopAccuracy: output_slots vector is empty."); float total_accs1_quant{0}; float total_accs1_ref{0}; for (size_t i = 0; i < output_slots_quant.size(); ++i) { PADDLE_ENFORCE(output_slots_quant[i].size() >= 2UL); PADDLE_ENFORCE(output_slots_ref[i].size() >= 2UL); // second output: acc_top1 if (output_slots_quant[i][1].lod.size() > 0 || output_slots_ref[i][1].lod.size() > 0) throw std::invalid_argument( "CompareTopAccuracy: top1 accuracy output has nonempty LoD."); if (output_slots_quant[i][1].dtype != paddle::PaddleDType::FLOAT32 || output_slots_ref[i][1].dtype != paddle::PaddleDType::FLOAT32) throw std::invalid_argument( "CompareTopAccuracy: top1 accuracy output is of a wrong type."); total_accs1_quant += *static_cast(output_slots_quant[i][1].data.data()); total_accs1_ref += *static_cast(output_slots_ref[i][1].data.data()); } float avg_acc1_quant = total_accs1_quant / output_slots_quant.size(); float avg_acc1_ref = total_accs1_ref / output_slots_ref.size(); SummarizeAccuracy(avg_acc1_ref, avg_acc1_quant); CHECK_GT(avg_acc1_ref, 0.0); CHECK_GT(avg_acc1_quant, 0.0); CHECK_LE(avg_acc1_ref - avg_acc1_quant, FLAGS_quantized_accuracy); } void CompareDeterministic( const PaddlePredictor::Config *config, const std::vector> &inputs) { int batch_size = FLAGS_batch_size; int num_times = FLAGS_repeat; auto predictor = CreateTestPredictor(config, FLAGS_use_analysis); std::vector warmup_outputs, outputs; // run num_times to Compare Deterministic Result. for (size_t j = 0; j < inputs.size(); j++) { // warmup run predictor->Run(inputs[j], &warmup_outputs, batch_size); for (int i = 0; i < num_times; i++) { predictor->Run(inputs[j], &outputs, batch_size); CompareResult(outputs, warmup_outputs); } } } void CompareNativeAndAnalysis( const PaddlePredictor::Config *config, const std::vector> &inputs) { PrintConfig(config, true); std::vector> native_outputs, analysis_outputs; TestOneThreadPrediction(config, inputs, &native_outputs, false); TestOneThreadPrediction(config, inputs, &analysis_outputs, true); PADDLE_ENFORCE(native_outputs.size() > 0, "Native output is empty."); PADDLE_ENFORCE(analysis_outputs.size() > 0, "Analysis output is empty."); CompareResult(analysis_outputs.back(), native_outputs.back()); } void CompareQuantizedAndAnalysis( const AnalysisConfig *config, const AnalysisConfig *qconfig, const std::vector> &inputs) { PADDLE_ENFORCE_EQ(inputs[0][0].shape[0], FLAGS_batch_size, "Input data has to be packed batch by batch."); LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size << ", warmup batch size " << FLAGS_warmup_batch_size << "."; LOG(INFO) << "--- FP32 prediction start ---"; auto *cfg = reinterpret_cast(config); PrintConfig(cfg, true); std::vector> analysis_outputs; float sample_latency_fp32{-1}; TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32, &sample_latency_fp32); LOG(INFO) << "--- INT8 prediction start ---"; auto *qcfg = reinterpret_cast(qconfig); PrintConfig(qcfg, true); std::vector> quantized_outputs; float sample_latency_int8{-1}; TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true, VarType::INT8, &sample_latency_int8); SummarizePerformance(sample_latency_fp32, sample_latency_int8); CompareTopAccuracy(quantized_outputs, analysis_outputs); } void CompareNativeAndAnalysis( PaddlePredictor *native_pred, PaddlePredictor *analysis_pred, const std::vector> &inputs) { int batch_size = FLAGS_batch_size; std::vector native_outputs, analysis_outputs; native_pred->Run(inputs[0], &native_outputs, batch_size); analysis_pred->Run(inputs[0], &analysis_outputs, batch_size); CompareResult(analysis_outputs, native_outputs); } void CompareAnalysisAndZeroCopy( PaddlePredictor::Config *config, PaddlePredictor::Config *config1, const std::vector> &inputs, const std::vector &outputs_name) { int batch_size = FLAGS_batch_size; // analysis std::vector analysis_outputs; auto predictor = CreateTestPredictor(config, true); predictor->Run(inputs[0], &analysis_outputs, batch_size); // analysis + zero_copy std::vector zerocopy_outputs; reinterpret_cast(config1)->SwitchUseFeedFetchOps(false); predictor = CreateTestPredictor(config1, true); ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]); predictor->ZeroCopyRun(); for (size_t i = 0; i < outputs_name.size(); i++) { ZeroCopyTensor zerocopy_output = *predictor->GetOutputTensor(outputs_name[i]).get(); zerocopy_outputs.emplace_back(zerocopy_output); LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output); } // compare CompareResult(analysis_outputs, zerocopy_outputs); } void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) { auto predictor = CreateTestPredictor( reinterpret_cast(cfg), FLAGS_use_analysis); (static_cast(predictor.get()))->SaveOptimModel(dstPath); } template std::string LoDTensorSummary(const framework::LoDTensor &tensor) { std::stringstream ss; ss << "\n---- tensor ---" << '\n'; ss << "lod: ["; for (const auto &level : tensor.lod()) { ss << "[ "; for (auto i : level) { ss << i << ", "; } ss << "]"; } ss << "]\n"; ss << "shape: ["; int size = 1; for (int i = 0; i < tensor.dims().size(); i++) { int dim = tensor.dims()[i]; ss << dim << ", "; size *= dim; } ss << "]\n"; ss << "data: "; for (int i = 0; i < std::min(20, size); i++) { ss << tensor.data()[i] << " "; } ss << "\n"; return ss.str(); } static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) { if (a.size() != b.size()) { LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(), b.size()); return false; } for (size_t i = 0; i < a.size(); i++) { auto &al = a[i]; auto &bl = b[i]; if (al.size() != bl.size()) { LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(), bl.size()); return false; } } return true; } static bool CompareShape(const std::vector &a, const std::vector &b) { if (a.size() != b.size()) { LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(), b.size()); return false; } for (size_t i = 0; i < a.size(); i++) { if (a[i] != b[i]) { LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i, a[i], b[i]); return false; } } return true; } static bool CompareTensorData(const framework::LoDTensor &a, const framework::LoDTensor &b) { auto a_shape = framework::vectorize(a.dims()); auto b_shape = framework::vectorize(b.dims()); size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1}, [](int a, int b) { return a * b; }); size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1}, [](int a, int b) { return a * b; }); if (a_size != b_size) { LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d", a_size, b_size); } for (size_t i = 0; i < a_size; i++) { if (a.type() == VarType::FP32) { const auto *a_data = a.data(); const auto *b_data = b.data(); if (std::abs(a_data[i] - b_data[i]) > 1e-3) { LOG(ERROR) << string::Sprintf( "tensor data %d-th element not match, %f != %f", i, a_data[i], b_data[i]); return false; } } else if (a.type() == VarType::INT64) { const auto *a_data = a.data(); const auto *b_data = b.data(); if (std::abs(a_data[i] - b_data[i]) > 1e-3) { LOG(ERROR) << string::Sprintf( "tensor data %d-th element not match, %f != %f", i, a_data[i], b_data[i]); return false; } } } return true; } static bool CompareTensor(const framework::LoDTensor &a, const framework::LoDTensor &b) { if (!CompareLoD(a.lod(), b.lod())) { return false; } if (!CompareShape(framework::vectorize(a.dims()), framework::vectorize(b.dims()))) { return false; } if (!CompareTensorData(a, b)) { return false; } return true; } } // namespace inference } // namespace paddle