# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid.core as core import paddle.fluid as fluid import math from op_test import OpTest, skip_check_grad_ci np.random.seed(100) def find_latest_set(num): return 1 + int(math.floor(math.log(num, 2))) class CodeTable(object): def __init__(self, num_classes, code): self.c = num_classes + code def cal_index(self, bit): return (self.c >> (bit + 1)) - 1 def get_length(self): return find_latest_set(self.c) - 1 def cal_bit(self, bit): return self.c & (1 << bit) class CodeTableWithCustomTree(object): def __init__(self, path_table, path_code, index): self.ptable_ = path_table self.pcode_ = path_code self.index_ = index def cal_index(self, bit): return self.ptable_[self.index_][bit] def get_length(self): length = 0 for ele in self.ptable_[self.index_]: # find the first -1 to stop trace if ele >= 0: length = length + 1 else: return length return length def cal_bit(self, bit): return self.pcode_[self.index_][bit] def hsigmoid(x, w, label, bias, num_classes): batch_size = x.shape[0] code_length = find_latest_set(num_classes - 1) code_table = [0 for _ in range(code_length)] pre_output = np.zeros((batch_size, code_length)) pre_sum = np.zeros((batch_size, 1)) out = np.zeros((batch_size, 1)) for i in range(batch_size): code_table = CodeTable(num_classes, label[i]) length = code_table.get_length() for j in range(length): idx = code_table.cal_index(j) pre_output[i][j] += bias[idx][0] for i in range(batch_size): code_table = CodeTable(num_classes, label[i]) length = code_table.get_length() for j in range(length): idx = code_table.cal_index(j) pre_output[i][j] += np.dot(w[idx], x[i]) # clip[-40.0, 40.0] pre_output = np.clip(pre_output, -40.0, 40.0) # out(i, 0) = \sum_j bit(i, j) * preout(i, j) for i in range(batch_size): code_table = CodeTable(num_classes, label[i]) length = code_table.get_length() sum = 0.0 for j in range(length): if code_table.cal_bit(j): sum += pre_output[i][j] out[i] = -1.0 * sum # soft relu pre_output = np.log(1 + np.exp(pre_output)) pre_sum = pre_output.sum(1).reshape((batch_size, 1)) out += pre_sum return pre_output, out def hsigmoid_grad(x, w, label, bias, num_classes): batch_size = x.shape[0] dx = np.zeros(x.shape) dw = np.zeros(w.shape) db = np.zeros(bias.shape) for i in range(batch_size): code_table = CodeTable(num_classes, label[i]) length = code_table.get_length() for j in range(length): idx = code_table.cal_index(j) t = 1 / (1 + np.exp(-(np.dot(w[idx], x[i]) + bias[idx]))) dx[i] = dx[i] + t * w[idx] dw[idx] += t * x[i] db[idx] += t if code_table.cal_bit(j): dx[i] = dx[i] - w[idx] dw[idx] -= x[i] db[idx] -= 1 dx /= batch_size dw /= batch_size db /= batch_size return [dx, dw, db] def hsigmoidWithCustomTree(x, w, path_table, path_code, label, bias, num_classes): batch_size = x.shape[0] code_length = len(path_table[0]) code_table = [0 for _ in range(code_length)] # init pre_out with shape [N, code_length] pre_output = np.zeros((batch_size, code_length)) pre_sum = np.zeros((batch_size, 1)) out = np.zeros((batch_size, 1)) if isinstance(bias, np.ndarray): for i in range(batch_size): code_table = CodeTableWithCustomTree(path_table, path_code, i) length = code_table.get_length() for j in range(length): idx = code_table.cal_index(j) pre_output[i][j] += bias[idx][0] for i in range(batch_size): code_table = CodeTableWithCustomTree(path_table, path_code, i) length = code_table.get_length() for j in range(length): idx = code_table.cal_index(j) pre_output[i][j] += np.dot(w[idx], x[i]) # clip[-40.0, 40.0] pre_output = np.clip(pre_output, -40.0, 40.0) # out(i, 0) = \sum_j bit(i, j) * preout(i, j) for i in range(batch_size): code_table = CodeTableWithCustomTree(path_table, path_code, i) length = code_table.get_length() sum = 0.0 for j in range(length): if code_table.cal_bit(j): sum += pre_output[i][j] out[i] = -1.0 * sum # soft relu pre_output = np.log(1 + np.exp(pre_output)) pre_sum = pre_output.sum(1).reshape((batch_size, 1)) out += pre_sum return pre_output, out class TestHSigmoidOp(OpTest): def setUp(self): self.op_type = "hierarchical_sigmoid" num_classes = 101 feature_size = 5 batch_size = 20 x = np.random.uniform(-1, 1, (batch_size, feature_size)) w = np.random.uniform(-1, 1, (num_classes - 1, feature_size)) label = np.random.randint(0, num_classes, (batch_size, 1)) bias = np.random.uniform(-1, 1, (num_classes - 1, 1)) self.attrs = {'num_classes': num_classes, 'is_sparse': False} self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias} pre_output, out = hsigmoid(x, w, label, bias, num_classes) self.outputs = {'PreOut': pre_output, 'Out': out} self.user_grads = hsigmoid_grad(x, w, label, bias, num_classes) def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad( ['X', 'W', 'Bias'], ['Out'], user_defined_grads=self.user_grads) #self.check_grad(['X', 'W', 'Bias'], ['Out']) @skip_check_grad_ci( reason="For 'TestHSigmoidOpSparse', check_grad is is separately calculated by 'TestHSigmoidOpWithSparseGrad'." ) class TestHSigmoidOpSparse(OpTest): def setUp(self): self.op_type = "hierarchical_sigmoid" num_classes = 6 #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample feature_size = 8 batch_size = 4 x = np.random.random((batch_size, feature_size)) w = np.random.random((num_classes - 1, feature_size)) label = np.array([0, 1, 4, 5]) path_table = np.array( [(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1), (0, 2, -1, -1, -1)]) #np.array to store 1,2,5,6s' non-leaf path(root -> leaf) path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), ( 1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]) #np.array to store bias = np.random.random((num_classes - 1, 1)) self.attrs = {'num_classes': num_classes, 'is_sparse': True} self.inputs = { 'X': x, 'W': w, 'PathTable': path_table, 'PathCode': path_code, 'Label': label, 'Bias': bias } pre_output, out = hsigmoidWithCustomTree(x, w, path_table, path_code, label, bias, num_classes) self.outputs = {'PreOut': pre_output, 'Out': out} def test_check_output(self): self.check_output() class TestHSigmoidOpWithSparseGrad(unittest.TestCase): def hs_net_conf(self, is_sparse): input_word = fluid.layers.data(name="x", shape=[1], dtype='int64') path_table = fluid.layers.data( name='path_table', shape=[3], dtype='int64') path_code = fluid.layers.data( name='path_code', shape=[3], dtype='int64') label = fluid.layers.data(name='label', shape=[1], dtype='int64') data_list = [input_word, path_table, path_code, label] emb = fluid.layers.embedding( input=input_word, is_sparse=is_sparse, size=[3, 3], param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal( scale=1 / math.sqrt(3)))) cost = fluid.layers.hsigmoid( input=emb, label=label, bias_attr=True, num_classes=3, path_table=path_table, path_code=path_code, is_custom=True, is_sparse=is_sparse) avg_cost = fluid.layers.reduce_mean(cost) return avg_cost, data_list def training_test(self, is_sparse): with fluid.program_guard(fluid.Program(), fluid.Program()): start_up = fluid.default_startup_program() start_up.random_seed = 1 # Fix random seed x = np.arange(6).reshape(6) path_table = np.array([(1, 2, -1), (1, 2, -1)]) path_code = np.array([(1, 0, -1), (0, 0, -1)]) label = np.array([1, 4]) loss, data_list = self.hs_net_conf(is_sparse) optimizer = fluid.optimizer.SGD(learning_rate=1e-3) optimizer.minimize(loss) main_program = fluid.default_main_program() place = fluid.CPUPlace() feeder = fluid.DataFeeder(feed_list=data_list, place=place) exe = fluid.Executor(place) exe.run(start_up) result = list() for i in range(10): data = [([[x[i % 2]]], [list(path_table[i % 2])], [list(path_code[i % 2])], [label[i % 2]])] loss_val = exe.run(main_program, feed=feeder.feed(data), fetch_list=[loss]) result.append(loss_val) return result def test_hs_grad_with_sparse(self): dense_result = self.training_test(is_sparse=False) sparse_result = self.training_test(is_sparse=True) assert (dense_result == sparse_result) @skip_check_grad_ci( reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape." ) class TestHSigmoidOpWithCostumTree(OpTest): def setUp(self): self.op_type = "hierarchical_sigmoid" num_classes = 6 #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample feature_size = 8 batch_size = 4 x = np.random.uniform(-1, 1, (batch_size, feature_size)) w = np.random.uniform(-1, 1, (num_classes - 1, feature_size)) label = np.array([0, 1, 4, 5]) path_table = np.array( [(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1), (0, 2, -1, -1, -1)]) #np.array to store 1,2,5,6s' non-leaf path(root -> leaf) path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), ( 1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]) #np.array to store bias = np.random.random((num_classes - 1, 1)) self.attrs = {'num_classes': num_classes, 'is_sparse': False} self.inputs = { 'X': x, 'W': w, 'PathTable': path_table, 'PathCode': path_code, 'Label': label, 'Bias': bias } pre_output, out = hsigmoidWithCustomTree(x, w, path_table, path_code, label, bias, num_classes) self.outputs = {'PreOut': pre_output, 'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label')) @skip_check_grad_ci( reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape." ) class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest): def setUp(self): self.op_type = "hierarchical_sigmoid" num_classes = 6 #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample feature_size = 8 batch_size = 4 x = np.random.uniform(-1, 1, (batch_size, feature_size)) w = np.random.uniform(-1, 1, (num_classes - 1, feature_size)) label = np.array([0, 1, 4, 5]) path_table = np.array( [(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1), (0, 2, -1, -1, -1)]) #np.array to store 1,2,5,6s' non-leaf path(root -> leaf) path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), ( 1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]) #np.array to store # bias = np.random.random((num_classes - 1, 1)).astype("float32") self.attrs = {'num_classes': num_classes, 'is_sparse': False} self.inputs = { 'X': x, 'W': w, 'PathTable': path_table, 'PathCode': path_code, 'Label': label, } pre_output, out = hsigmoidWithCustomTree( x=x, w=w, path_table=path_table, path_code=path_code, label=label, bias=None, num_classes=num_classes) self.outputs = {'PreOut': pre_output, 'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X', 'W'], ['Out'], no_grad_set=set('Label')) if __name__ == '__main__': unittest.main()