/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "gtest/gtest.h" #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/platform/cpu_helper.h" #include "paddle/fluid/platform/init.h" USE_OP(cinn_launch); USE_OP(elementwise_add); namespace paddle { namespace operators { using framework::LoDTensor; using framework::ir::Graph; using framework::ir::Node; using framework::paddle2cinn::CinnCompiler; std::unique_ptr CreateOnlyElementwiseAddGraph( const std::string& x_name, const std::string& y_name, const std::string& out_name) { auto g = std::make_unique(framework::ProgramDesc()); framework::OpDesc feed_op_x, feed_op_y; feed_op_x.SetType("feed"); feed_op_x.SetOutput("Out", {x_name}); feed_op_y.SetType("feed"); feed_op_y.SetOutput("Out", {y_name}); framework::VarDesc x_var(x_name); framework::VarDesc y_var(y_name); framework::VarDesc out_var(out_name); framework::OpDesc elementwise_add_op; elementwise_add_op.SetType("add"); elementwise_add_op.SetInput("X", {x_name}); elementwise_add_op.SetInput("Y", {y_name}); elementwise_add_op.SetOutput("Out", {out_name}); auto* feed_op_node_x = g->CreateOpNode(&feed_op_x); auto* feed_op_node_y = g->CreateOpNode(&feed_op_y); auto* elementwise_add_node = g->CreateOpNode(&elementwise_add_op); auto* x_node = g->CreateVarNode(&x_var); auto* y_node = g->CreateVarNode(&y_var); auto* out_node = g->CreateVarNode(&out_var); // fill op node feed_op_node_x->outputs = {x_node}; feed_op_node_y->outputs = {y_node}; elementwise_add_node->inputs = {x_node, y_node}; elementwise_add_node->outputs = {out_node}; // fill variable node x_node->inputs = {feed_op_node_x}; x_node->outputs = {elementwise_add_node}; y_node->inputs = {feed_op_node_y}; y_node->outputs = {elementwise_add_node}; out_node->inputs = {elementwise_add_node}; return g; } void CreateInputVariablesWithRandomData( const std::vector& variable_names, const framework::DDim& common_ddim, framework::Scope* scope) { std::random_device seed; std::default_random_engine engine(seed()); std::uniform_real_distribution dist(0.f, 2.f); for (const auto& var_name : variable_names) { auto* tensor = scope->Var(var_name)->GetMutable(); auto* data = tensor->mutable_data(common_ddim, platform::CPUPlace()); for (auto i = 0; i < tensor->numel(); ++i) { data[i] = dist(engine); } } } void CopyInputDataToPlace(const framework::Scope& scope, const platform::Place& dst_place, framework::Scope* dst_scope) { for (const auto& var_name : scope.LocalVarNames()) { const auto& src_tensor = scope.GetVar(var_name)->Get(); auto* dst_tensor = dst_scope->Var(var_name)->GetMutable(); TensorCopySync(src_tensor, dst_place, dst_tensor); } } TEST(CinnLaunchOpTest, TestElementwiseAddPass) { paddle::framework::InitDevices(); platform::SetNumThreads(1); // cache test graph into CinnCompiler const auto& test_out_name = "test_out"; const auto& expected_out_name = "expected_out"; auto compilation_key = CinnCompiler::GetInstance()->AddGraph( CreateOnlyElementwiseAddGraph("test_x", "test_y", test_out_name)); // create cinn_launch_op and elementwise_add op auto cinn_launch_op = paddle::framework::OpRegistry::CreateOp( "cinn_launch", {{"X", {"test_x", "test_y"}}}, {{"Out", {test_out_name}}}, {{"compilation_key", compilation_key}}); auto elementwise_add_op = paddle::framework::OpRegistry::CreateOp( "elementwise_add", {{"X", {"test_x"}}, {"Y", {"test_y"}}}, {{"Out", {expected_out_name}}}, {{}}); // prepare input data framework::Scope init_scope; CreateInputVariablesWithRandomData({"test_x", "test_y"}, {10, 20}, &init_scope); // Run ops and check the computation results auto run_and_check_fn = [&](const platform::Place& place) { framework::Scope scope; CopyInputDataToPlace(init_scope, place, &scope); scope.Var(test_out_name)->GetMutable(); scope.Var(expected_out_name)->GetMutable(); cinn_launch_op->Run(scope, place); elementwise_add_op->Run(scope, place); LoDTensor test_out, expected_out; if (platform::is_cpu_place(place)) { test_out.ShareDataWith(scope.Var(test_out_name)->Get()); expected_out.ShareDataWith( scope.Var(expected_out_name)->Get()); } else { TensorCopySync(scope.Var(test_out_name)->Get(), platform::CPUPlace(), &test_out); TensorCopySync(scope.Var(expected_out_name)->Get(), platform::CPUPlace(), &expected_out); } ASSERT_TRUE(test_out.IsInitialized()); ASSERT_TRUE(expected_out.IsInitialized()); ASSERT_EQ(test_out.dims(), expected_out.dims()); const auto* test_data = test_out.data(); const auto* excepted_data = expected_out.data(); for (auto i = 0; i < expected_out.numel(); ++i) { EXPECT_FLOAT_EQ(test_data[i], excepted_data[i]); } }; LOG(INFO) << "Check compute result on cpu"; run_and_check_fn(platform::CPUPlace()); run_and_check_fn(platform::CPUPlace()); // create an new elementwise_add op // because the above one cached the cpu kernel LOG(INFO) << "Check compute result on gpu"; cinn_launch_op = paddle::framework::OpRegistry::CreateOp( "cinn_launch", {{"X", {"test_x", "test_y"}}}, {{"Out", {test_out_name}}}, {{"compilation_key", compilation_key}}); elementwise_add_op = paddle::framework::OpRegistry::CreateOp( "elementwise_add", {{"X", {"test_x"}}, {"Y", {"test_y"}}}, {{"Out", {expected_out_name}}}, {{}}); run_and_check_fn(platform::CUDAPlace()); run_and_check_fn(platform::CUDAPlace()); } } // namespace operators } // namespace paddle