# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.fluid.layer_helper import LayerHelper, _non_static_mode from paddle.fluid.data_feeder import check_variable_and_dtype from paddle import _C_ops from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode __all__ = [] def segment_sum(data, segment_ids, name=None): r""" Segment Sum Operator. This operator sums the elements of input `data` which with the same index in `segment_ids`. It computes a tensor such that $out_i = \\sum_{j} data_{j}$ where sum is over j such that `segment_ids[j] == i`. Args: data (Tensor): A tensor, available data type float32, float64, int32, int64. segment_ids (Tensor): A 1-D tensor, which have the same size with the first dimension of input data. Available data type is int32, int64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: output (Tensor): the reduced result. Examples: .. code-block:: python import paddle data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32') segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32') out = paddle.incubate.segment_sum(data, segment_ids) #Outputs: [[4., 4., 4.], [4., 5., 6.]] """ if in_dygraph_mode(): return _C_ops.final_state_segment_pool(data, segment_ids, "SUM")[0] if _in_legacy_dygraph(): out, tmp = _C_ops.segment_pool(data, segment_ids, 'pooltype', "SUM") return out check_variable_and_dtype(data, "X", ("float32", "float64", "int32", "int64"), "segment_pool") check_variable_and_dtype(segment_ids, "SegmentIds", ("int32", "int64"), "segment_pool") helper = LayerHelper("segment_sum", **locals()) out = helper.create_variable_for_type_inference(dtype=data.dtype) summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype) helper.append_op( type="segment_pool", inputs={"X": data, "SegmentIds": segment_ids}, outputs={"Out": out, "SummedIds": summed_ids}, attrs={"pooltype": "SUM"}) return out def segment_mean(data, segment_ids, name=None): r""" Segment mean Operator. Ihis operator calculate the mean value of input `data` which with the same index in `segment_ids`. It computes a tensor such that $out_i = \\frac{1}{n_i} \\sum_{j} data[j]$ where sum is over j such that 'segment_ids[j] == i' and $n_i$ is the number of all index 'segment_ids[j] == i'. Args: data (tensor): a tensor, available data type float32, float64, int32, int64. segment_ids (tensor): a 1-d tensor, which have the same size with the first dimension of input data. available data type is int32, int64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: output (Tensor): the reduced result. Examples: .. code-block:: python import paddle data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32') segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32') out = paddle.incubate.segment_mean(data, segment_ids) #Outputs: [[2., 2., 2.], [4., 5., 6.]] """ if in_dygraph_mode(): return _C_ops.final_state_segment_pool(data, segment_ids, "MEAN")[0] if _non_static_mode(): out, tmp = _C_ops.segment_pool(data, segment_ids, 'pooltype', "MEAN") return out check_variable_and_dtype(data, "X", ("float32", "float64", "int32", "int64"), "segment_pool") check_variable_and_dtype(segment_ids, "SegmentIds", ("int32", "int64"), "segment_pool") helper = LayerHelper("segment_mean", **locals()) out = helper.create_variable_for_type_inference(dtype=data.dtype) summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype) helper.append_op( type="segment_pool", inputs={"X": data, "SegmentIds": segment_ids}, outputs={"Out": out, "SummedIds": summed_ids}, attrs={"pooltype": "MEAN"}) return out def segment_min(data, segment_ids, name=None): r""" Segment min operator. This operator calculate the minimum elements of input `data` which with the same index in `segment_ids`. It computes a tensor such that $out_i = \\min_{j} data_{j}$ where min is over j such that `segment_ids[j] == i`. Args: data (tensor): a tensor, available data type float32, float64, int32, int64. segment_ids (tensor): a 1-d tensor, which have the same size with the first dimension of input data. available data type is int32, int64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: output (Tensor): the reduced result. Examples: .. code-block:: python import paddle data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32') segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32') out = paddle.incubate.segment_min(data, segment_ids) #Outputs: [[1., 2., 1.], [4., 5., 6.]] """ if in_dygraph_mode(): return _C_ops.final_state_segment_pool(data, segment_ids, "MIN")[0] if _non_static_mode(): out, tmp = _C_ops.segment_pool(data, segment_ids, 'pooltype', "MIN") return out check_variable_and_dtype(data, "X", ("float32", "float64", "int32", "int64"), "segment_pool") check_variable_and_dtype(segment_ids, "SegmentIds", ("int32", "int64"), "segment_pool") helper = LayerHelper("segment_min", **locals()) out = helper.create_variable_for_type_inference(dtype=data.dtype) summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype) helper.append_op( type="segment_pool", inputs={"X": data, "SegmentIds": segment_ids}, outputs={"Out": out, "SummedIds": summed_ids}, attrs={"pooltype": "MIN"}) return out def segment_max(data, segment_ids, name=None): r""" Segment max operator. This operator calculate the maximum elements of input `data` which with the same index in `segment_ids`. It computes a tensor such that $out_i = \\max_{j} data_{j}$ where max is over j such that `segment_ids[j] == i`. Args: data (tensor): a tensor, available data type float32, float64, int32, int64. segment_ids (tensor): a 1-d tensor, which have the same size with the first dimension of input data. available data type is int32, int64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: output (Tensor): the reduced result. Examples: .. code-block:: python import paddle data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32') segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32') out = paddle.incubate.segment_max(data, segment_ids) #Outputs: [[3., 2., 3.], [4., 5., 6.]] """ if in_dygraph_mode(): out, tmp = _C_ops.final_state_segment_pool(data, segment_ids, "MAX") return out if _non_static_mode(): out, tmp = _C_ops.segment_pool(data, segment_ids, 'pooltype', "MAX") return out check_variable_and_dtype(data, "X", ("float32", "float64", "int32", "int64"), "segment_pool") check_variable_and_dtype(segment_ids, "SegmentIds", ("int32", "int64"), "segment_pool") helper = LayerHelper("segment_max", **locals()) out = helper.create_variable_for_type_inference(dtype=data.dtype) summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype) helper.append_op( type="segment_pool", inputs={"X": data, "SegmentIds": segment_ids}, outputs={"Out": out, "SummedIds": summed_ids}, attrs={"pooltype": "MAX"}) return out