/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template class SamplingIdKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("X"); const int batch_size = static_cast(input->dims()[0]); const int width = static_cast(input->dims()[1]); PADDLE_ENFORCE_GE(batch_size, 0, "batch_size(dims[0]) must be nonnegative."); PADDLE_ENFORCE_GE(width, 0, "width(dims[1]) must be nonnegative."); std::vector ins_vector; framework::TensorToVector(*input, context.device_context(), &ins_vector); unsigned int seed = static_cast(context.Attr("seed")); std::minstd_rand engine; if (seed == 0) { seed = std::random_device()(); } engine.seed(seed); std::uniform_real_distribution dist( static_cast(context.Attr("min")), static_cast(context.Attr("max"))); <<<<<<< HEAD std::vector ids(batch_size); for (size_t i = 0; i < batch_size; ++i) { ======= std::vector ids(batch_size); for (int i = 0; i < batch_size; ++i) { >>>>>>> 823c4f87beff04e4029e3f4a183658621ca8f01b T r = dist(engine); int idx = width - 1; for (int j = 0; j < width; ++j) { if ((r -= ins_vector[i * width + j]) < 0) { idx = j; break; } } <<<<<<< HEAD ids[i] = int64_t(idx); ======= ids[i] = ins_vector[idx]; >>>>>>> 823c4f87beff04e4029e3f4a183658621ca8f01b } std::vector out_dim; out_dim.push_back(static_cast(batch_size)); Tensor* output = context.Output("Out"); output->Resize(framework::make_ddim(out_dim)); output->mutable_data(context.GetPlace()); framework::TensorFromVector(ids, context.device_context(), output); } }; } // namespace operators } // namespace paddle