import paddle.v2 as paddle import numpy as np paddle.init(use_gpu=False) x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(2)) y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) # loading the model which generated by training with open('params_pass_90.tar', 'r') as f: parameters = paddle.parameters.Parameters.from_tar(f) # Input multiple sets of dataļ¼ŒOutput the infer result in a array. i = [[[1, 2]], [[3, 4]], [[5, 6]]] print paddle.infer(output_layer=y_predict, parameters=parameters, input=i) # Will print: # [[ -3.24491572] # [ -6.94668722] # [-10.64845848]]