// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/anakin/convert/conv2d.h" #include #include #include using anakin::graph::GraphGlobalMem; using anakin::AK_FLOAT; using anakin::saber::NV; using anakin::saber::Shape; using anakin::PTuple; namespace paddle { namespace inference { namespace anakin { void Conv2dOpConverter::operator()(const framework::proto::OpDesc &op, const framework::Scope &scope, bool test_mode) { framework::OpDesc op_desc(op, nullptr); PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1UL); PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1UL); PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1UL); auto input_name = op_desc.Input("Input").front(); auto output_name = op_desc.Output("Output").front(); auto op_name = op_desc.Type() + ":" + op_desc.Output("Output").front(); engine_->AddOp(op_name, "Convolution", {input_name}, {output_name}); auto *filter_v = scope.FindVar(op_desc.Input("Filter").front()); PADDLE_ENFORCE_NOT_NULL(filter_v); auto *filter_t = filter_v->GetMutable(); std::unique_ptr weight_tensor( new framework::LoDTensor()); weight_tensor->Resize(filter_t->dims()); TensorCopySync((*filter_t), platform::CPUPlace(), weight_tensor.get()); PADDLE_ENFORCE_EQ(weight_tensor->dims().size(), 4UL); // const int n_output = weight_tensor->dims()[0]; const int n_input = weight_tensor->dims()[1]; const int filter_h = weight_tensor->dims()[2]; const int filter_w = weight_tensor->dims()[3]; auto filter_num = n_input * filter_h * filter_w; engine_->AddOpAttr(op_name, "filter_num", filter_num); engine_->AddOpAttr>(op_name, "kernel_size", {filter_h, filter_w}); auto strides = boost::get>(op_desc.GetAttr("strides")); engine_->AddOpAttr>(op_name, "strides", strides); auto paddings = boost::get>(op_desc.GetAttr("paddings")); engine_->AddOpAttr>(op_name, "padding", paddings); auto dilations = boost::get>(op_desc.GetAttr("dilations")); engine_->AddOpAttr>(op_name, "dilation_rate", dilations); const int groups = boost::get(op_desc.GetAttr("groups")); engine_->AddOpAttr(op_name, "group", groups); engine_->AddOpAttr(op_name, "axis", 1); engine_->AddOpAttr(op_name, "bias_term", false); auto weight_shape = framework::vectorize2int(filter_t->dims()); Shape anakin_shape(weight_shape); auto *weight1 = GraphGlobalMem::Global().template new_block(anakin_shape); float *cpu_data = static_cast(weight1->h_tensor().mutable_data()); std::copy_n(weight_tensor->data(), weight_tensor->numel(), cpu_data); weight1->d_tensor().set_shape(anakin_shape); weight1->d_tensor().copy_from(weight1->h_tensor()); engine_->AddOpAttr(op_name, "weight_1", *weight1); } } // namespace anakin } // namespace inference } // namespace paddle REGISTER_ANAKIN_OP_CONVERTER(conv2d, Conv2dOpConverter);