// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/inference/analysis/analyzer.h" #include "paddle/fluid/inference/analysis/ut_helper.h" #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/platform/profiler.h" DEFINE_string(infer_model, "", "model path"); DEFINE_string(infer_data, "", "data path"); DEFINE_int32(batch_size, 10, "batch size."); DEFINE_int32(repeat, 1, "Running the inference program repeat times."); namespace paddle { namespace inference { struct DataRecord { std::vector> word_data_all, mention_data_all; std::vector> rnn_word_datas, rnn_mention_datas; std::vector lod; // two inputs have the same lod info. size_t batch_iter{0}; size_t batch_size{1}; DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) : batch_size(batch_size) { Load(path); } DataRecord NextBatch() { DataRecord data; size_t batch_end = batch_iter + batch_size; // NOTE skip the final batch, if no enough data is provided. if (batch_end <= word_data_all.size()) { data.word_data_all.assign(word_data_all.begin() + batch_iter, word_data_all.begin() + batch_end); data.mention_data_all.assign(mention_data_all.begin() + batch_iter, mention_data_all.begin() + batch_end); // Prepare LoDs data.lod.push_back(0); CHECK(!data.word_data_all.empty()); CHECK(!data.mention_data_all.empty()); CHECK_EQ(data.word_data_all.size(), data.mention_data_all.size()); for (size_t j = 0; j < data.word_data_all.size(); j++) { data.rnn_word_datas.push_back(data.word_data_all[j]); data.rnn_mention_datas.push_back(data.mention_data_all[j]); // calculate lod data.lod.push_back(data.lod.back() + data.word_data_all[j].size()); } } batch_iter += batch_size; return data; } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; while (std::getline(file, line)) { num_lines++; std::vector data; split(line, ';', &data); // load word data std::vector word_data; split_to_int64(data[1], ' ', &word_data); // load mention data std::vector mention_data; split_to_int64(data[3], ' ', &mention_data); word_data_all.push_back(std::move(word_data)); mention_data_all.push_back(std::move(mention_data)); } } }; void PrepareInputs(std::vector *input_slots, DataRecord *data, int batch_size) { PaddleTensor lod_word_tensor, lod_mention_tensor; lod_word_tensor.name = "word"; lod_mention_tensor.name = "mention"; auto one_batch = data->NextBatch(); int size = one_batch.lod[one_batch.lod.size() - 1]; // token batch size lod_word_tensor.shape.assign({size, 1}); lod_word_tensor.lod.assign({one_batch.lod}); lod_mention_tensor.shape.assign({size, 1}); lod_mention_tensor.lod.assign({one_batch.lod}); // assign data TensorAssignData(&lod_word_tensor, one_batch.rnn_word_datas); TensorAssignData(&lod_mention_tensor, one_batch.rnn_mention_datas); // Set inputs. input_slots->assign({lod_word_tensor, lod_mention_tensor}); for (auto &tensor : *input_slots) { tensor.dtype = PaddleDType::INT64; } } // the first inference result const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26, 48, 39, 38, 16, 25}; void TestChineseNERPrediction() { NativeConfig config; config.prog_file = FLAGS_infer_model + "/__model__"; config.param_file = FLAGS_infer_model + "/param"; config.use_gpu = false; config.device = 0; config.specify_input_name = true; auto predictor = CreatePaddlePredictor(config); std::vector input_slots; DataRecord data(FLAGS_infer_data, FLAGS_batch_size); // Prepare inputs. PrepareInputs(&input_slots, &data, FLAGS_batch_size); std::vector outputs; Timer timer; timer.tic(); for (int i = 0; i < FLAGS_repeat; i++) { predictor->Run(input_slots, &outputs); } LOG(INFO) << "===========profile result==========="; LOG(INFO) << "batch_size: " << FLAGS_batch_size << ", repeat: " << FLAGS_repeat << ", latency: " << timer.toc() / FLAGS_repeat << "ms"; LOG(INFO) << "====================================="; PADDLE_ENFORCE(outputs.size(), 1UL); auto &out = outputs[0]; size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, [](int a, int b) { return a * b; }); PADDLE_ENFORCE_GT(size, 0); int64_t *result = static_cast(out.data.data()); for (size_t i = 0; i < std::min(11UL, size); i++) { PADDLE_ENFORCE(result[i], chinese_ner_result_data[i]); } } // Directly infer with the original model. TEST(Analyzer, Chinese_ner) { TestChineseNERPrediction(); } } // namespace inference } // namespace paddle