// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/complex_view_op.h" #include #include #include #include #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/infershape_utils.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/phi/infermeta/unary.h" namespace paddle { namespace operators { class AsComplexOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "as_complex"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "as_complex"); auto in_dims = ctx->GetInputDim("X"); const int input_rank = in_dims.size(); PADDLE_ENFORCE_GE( input_rank, 1, platform::errors::InvalidArgument( "The rank of input(X) is less than 1. " "Expected the rank of input(X) to be equal to or greater than 1." "But received rank of input(X) = %d", input_rank)); const int last_dim_size = in_dims[input_rank - 1]; PADDLE_ENFORCE_EQ( last_dim_size, 2, platform::errors::InvalidArgument( "The size of the last dimension of input(X)" "does not equals 2." "Expected the size of last dimension of input(X) to be 2." "But received %d", last_dim_size)); const framework::DDim out_dims(in_dims.Get(), input_rank - 1); ctx->SetOutputDim("Out", out_dims); ctx->ShareLoD("X", /*->*/ "Out"); } }; class AsComplexOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of view_as_complex op."); AddOutput("Out", "(Tensor), The output tensor of view_as_complex op."); AddComment(R"DOC( As_complex Operator. This operator is used to return a complex tensor represented by an old-fashioned real tensor. The size of the last dimension of the input tensor should be 2, which corresponds to 'real' and 'complex', respectively. )DOC"); } }; template class AsComplexGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; void Apply(GradOpPtr retv) const override { retv->SetType("as_real"); retv->SetInput("X", this->OutputGrad("Out")); retv->SetAttrMap(this->Attrs()); retv->SetOutput("Out", this->InputGrad("X")); } }; class AsRealOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(ctx, "X"); return framework::OpKernelType(framework::ToRealType(input_data_type), ctx.GetPlace()); } }; class AsRealOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of as_real op."); AddOutput("Out", "(Tensor), The output tensor of as_real op."); AddComment(R"DOC( AsReal Operator. This operator is used to return an old-fashioned real tensor from a complex tensor. The size of the last dimension of the output tensor is 2, which corresponds to 'real' and 'complex', respectively. )DOC"); } }; template class AsRealGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; void Apply(GradOpPtr retv) const override { retv->SetType("as_complex"); retv->SetInput("X", this->OutputGrad("Out")); retv->SetAttrMap(this->Attrs()); retv->SetOutput("Out", this->InputGrad("X")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; DECLARE_INFER_SHAPE_FUNCTOR(as_real, AsRealInferShapeFunctor, PD_INFER_META(phi::AsRealInferMeta)); REGISTER_OPERATOR(as_complex, ops::AsComplexOp, ops::AsComplexOpMaker, ops::AsComplexGradMaker, ops::AsComplexGradMaker); REGISTER_OPERATOR(as_real, ops::AsRealOp, ops::AsRealOpMaker, AsRealInferShapeFunctor, ops::AsRealGradMaker, ops::AsRealGradMaker); REGISTER_OP_CPU_KERNEL(as_complex, ops::AsComplexKernel, ops::AsComplexKernel);