// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/tests/api/tester_helper.h" namespace paddle { namespace inference { using contrib::AnalysisConfig; struct DataRecord { std::vector> word_data_all, mention_data_all; std::vector lod; // two inputs have the same lod info. size_t batch_iter{0}; size_t batch_size{1}; size_t num_samples; // total number of samples DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) : batch_size(batch_size) { Load(path); } DataRecord NextBatch() { DataRecord data; size_t batch_end = batch_iter + batch_size; // NOTE skip the final batch, if no enough data is provided. if (batch_end <= word_data_all.size()) { data.word_data_all.assign(word_data_all.begin() + batch_iter, word_data_all.begin() + batch_end); data.mention_data_all.assign(mention_data_all.begin() + batch_iter, mention_data_all.begin() + batch_end); // Prepare LoDs data.lod.push_back(0); CHECK(!data.word_data_all.empty()); CHECK(!data.mention_data_all.empty()); CHECK_EQ(data.word_data_all.size(), data.mention_data_all.size()); for (size_t j = 0; j < data.word_data_all.size(); j++) { // calculate lod data.lod.push_back(data.lod.back() + data.word_data_all[j].size()); } } batch_iter += batch_size; return data; } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; while (std::getline(file, line)) { num_lines++; std::vector data; split(line, ';', &data); // load word data std::vector word_data; split_to_int64(data[1], ' ', &word_data); // load mention data std::vector mention_data; split_to_int64(data[3], ' ', &mention_data); word_data_all.push_back(std::move(word_data)); mention_data_all.push_back(std::move(mention_data)); } num_samples = num_lines; } }; void PrepareInputs(std::vector *input_slots, DataRecord *data, int batch_size) { PaddleTensor lod_word_tensor, lod_mention_tensor; lod_word_tensor.name = "word"; lod_mention_tensor.name = "mention"; auto one_batch = data->NextBatch(); // assign data TensorAssignData(&lod_word_tensor, one_batch.word_data_all, one_batch.lod); TensorAssignData(&lod_mention_tensor, one_batch.mention_data_all, one_batch.lod); // Set inputs. input_slots->assign({lod_word_tensor, lod_mention_tensor}); for (auto &tensor : *input_slots) { tensor.dtype = PaddleDType::INT64; } } void SetConfig(contrib::AnalysisConfig *cfg, bool memory_load = false) { if (memory_load) { std::string buffer_prog, buffer_param; ReadBinaryFile(FLAGS_infer_model + "/__model__", &buffer_prog); ReadBinaryFile(FLAGS_infer_model + "/param", &buffer_param); cfg->SetModelBuffer(&buffer_prog[0], buffer_prog.size(), &buffer_param[0], buffer_param.size()); } else { cfg->prog_file = FLAGS_infer_model + "/__model__"; cfg->param_file = FLAGS_infer_model + "/param"; } cfg->use_gpu = false; cfg->device = 0; cfg->specify_input_name = true; cfg->enable_ir_optim = true; } void SetInput(std::vector> *inputs) { DataRecord data(FLAGS_infer_data, FLAGS_batch_size); std::vector input_slots; int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1; LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size; for (int bid = 0; bid < epoch; ++bid) { PrepareInputs(&input_slots, &data, FLAGS_batch_size); (*inputs).emplace_back(input_slots); } } // Easy for profiling independently. void profile(bool memory_load = false) { contrib::AnalysisConfig cfg; SetConfig(&cfg, memory_load); std::vector outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(reinterpret_cast(&cfg), input_slots_all, &outputs, FLAGS_num_threads); if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { // the first inference result const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26, 48, 39, 38, 16, 25}; PADDLE_ENFORCE_EQ(outputs.size(), 1UL); size_t size = GetSize(outputs[0]); PADDLE_ENFORCE_GT(size, 0); int64_t *result = static_cast(outputs[0].data.data()); for (size_t i = 0; i < std::min(11UL, size); i++) { EXPECT_EQ(result[i], chinese_ner_result_data[i]); } } } TEST(Analyzer_Chinese_ner, profile) { profile(); } TEST(Analyzer_Chinese_ner, profile_memory_load) { profile(true /* memory_load */); } // Check the fuse status TEST(Analyzer_Chinese_ner, fuse_statis) { contrib::AnalysisConfig cfg; SetConfig(&cfg); int num_ops; auto predictor = CreatePaddlePredictor(cfg); auto fuse_statis = GetFuseStatis( static_cast(predictor.get()), &num_ops); ASSERT_TRUE(fuse_statis.count("fc_fuse")); ASSERT_TRUE(fuse_statis.count("fc_gru_fuse")); EXPECT_EQ(fuse_statis.at("fc_fuse"), 1); EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 2); EXPECT_EQ(num_ops, 14); } // Compare result of NativeConfig and AnalysisConfig TEST(Analyzer_Chinese_ner, compare) { contrib::AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareNativeAndAnalysis( reinterpret_cast(&cfg), input_slots_all); } // Compare Deterministic result TEST(Analyzer_Chinese_ner, compare_determine) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareDeterministic(reinterpret_cast(&cfg), input_slots_all); } } // namespace inference } // namespace paddle