// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/tests/api/tester_helper.h" namespace paddle { namespace inference { using contrib::AnalysisConfig; struct DataRecord { std::vector> query_data_all, title_data_all; std::vector lod1, lod2; size_t batch_iter{0}; size_t batch_size{1}; size_t num_samples; // total number of samples DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) : batch_size(batch_size) { Load(path); } DataRecord NextBatch() { DataRecord data; size_t batch_end = batch_iter + batch_size; // NOTE skip the final batch, if no enough data is provided. if (batch_end <= query_data_all.size()) { data.query_data_all.assign(query_data_all.begin() + batch_iter, query_data_all.begin() + batch_end); data.title_data_all.assign(title_data_all.begin() + batch_iter, title_data_all.begin() + batch_end); // Prepare LoDs data.lod1.push_back(0); data.lod2.push_back(0); CHECK(!data.query_data_all.empty()); CHECK(!data.title_data_all.empty()); CHECK_EQ(data.query_data_all.size(), data.title_data_all.size()); for (size_t j = 0; j < data.query_data_all.size(); j++) { // calculate lod data.lod1.push_back(data.lod1.back() + data.query_data_all[j].size()); data.lod2.push_back(data.lod2.back() + data.title_data_all[j].size()); } } batch_iter += batch_size; return data; } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; while (std::getline(file, line)) { num_lines++; std::vector data; split(line, '\t', &data); // load query data std::vector query_data; split_to_int64(data[0], ' ', &query_data); // load title data std::vector title_data; split_to_int64(data[1], ' ', &title_data); query_data_all.push_back(std::move(query_data)); title_data_all.push_back(std::move(title_data)); } num_samples = num_lines; } }; void PrepareInputs(std::vector *input_slots, DataRecord *data, int batch_size) { PaddleTensor lod_query_tensor, lod_title_tensor; lod_query_tensor.name = "left"; lod_title_tensor.name = "right"; auto one_batch = data->NextBatch(); // assign data TensorAssignData(&lod_query_tensor, one_batch.query_data_all, one_batch.lod1); TensorAssignData(&lod_title_tensor, one_batch.title_data_all, one_batch.lod2); // Set inputs. input_slots->assign({lod_query_tensor, lod_title_tensor}); for (auto &tensor : *input_slots) { tensor.dtype = PaddleDType::INT64; } } void SetConfig(contrib::AnalysisConfig *cfg) { cfg->model_dir = FLAGS_infer_model; cfg->use_gpu = false; cfg->device = 0; cfg->specify_input_name = true; cfg->enable_ir_optim = true; } void SetInput(std::vector> *inputs) { DataRecord data(FLAGS_infer_data, FLAGS_batch_size); std::vector input_slots; int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1; LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size; for (int bid = 0; bid < epoch; ++bid) { PrepareInputs(&input_slots, &data, FLAGS_batch_size); (*inputs).emplace_back(input_slots); } } // Easy for profiling independently. TEST(Analyzer_MM_DNN, profile) { contrib::AnalysisConfig cfg; SetConfig(&cfg); std::vector outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(reinterpret_cast(&cfg), input_slots_all, &outputs, FLAGS_num_threads); if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { PADDLE_ENFORCE_EQ(outputs.size(), 2UL); for (auto &output : outputs) { size_t size = GetSize(output); PADDLE_ENFORCE_GT(size, 0); float *result = static_cast(output.data.data()); // output is probability, which is in (-1, 1). for (size_t i = 0; i < size; i++) { EXPECT_GT(result[i], -1); EXPECT_LT(result[i], 1); } } } } // Check the fuse status TEST(Analyzer_MM_DNN, fuse_statis) { contrib::AnalysisConfig cfg; SetConfig(&cfg); int num_ops; auto predictor = CreatePaddlePredictor(cfg); auto fuse_statis = GetFuseStatis( static_cast(predictor.get()), &num_ops); } // Compare result of NativeConfig and AnalysisConfig TEST(Analyzer_MM_DNN, compare) { contrib::AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareNativeAndAnalysis( reinterpret_cast(&cfg), input_slots_all); } // Compare Deterministic result TEST(Analyzer_MM_DNN, compare_determine) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareDeterministic(reinterpret_cast(&cfg), input_slots_all); } } // namespace inference } // namespace paddle