# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import collections import itertools import six import math import sys import warnings from functools import partial, reduce import numpy as np import paddle import paddle.fluid as fluid from paddle import framework from paddle.device import get_device, get_cudnn_version from paddle.nn import initializer as I from paddle.nn import Layer, LayerList from paddle.fluid.layers import utils from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.layers.utils import map_structure, flatten, pack_sequence_as from paddle.fluid.data_feeder import convert_dtype from paddle.fluid.param_attr import ParamAttr from paddle import _C_ops def resnet_unit(x, filter_x, scale_x, bias_x, mean_x, var_x, z, filter_z, scale_z, bias_z, mean_z, var_z, stride, stride_z, padding, dilation, groups, momentum, eps, data_format, fuse_add, has_shortcut, use_global_stats, is_test, act): helper = LayerHelper('resnet_unit', **locals()) bn_param_dtype = fluid.core.VarDesc.VarType.FP32 bit_mask_dtype = fluid.core.VarDesc.VarType.INT32 out = helper.create_variable_for_type_inference(x.dtype) bit_mask = helper.create_variable_for_type_inference(dtype=bit_mask_dtype, stop_gradient=True) # intermediate_out for x conv_x = helper.create_variable_for_type_inference(dtype=x.dtype, stop_gradient=True) saved_mean_x = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) saved_invstd_x = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) running_mean_x = mean_x running_var_x = var_x # intermediate_out for z conv_z = helper.create_variable_for_type_inference(dtype=x.dtype, stop_gradient=True) saved_mean_z = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) saved_invstd_z = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) running_mean_z = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) if mean_z is None else mean_z running_var_z = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) if var_z is None else var_z inputs = { 'X': x, 'FilterX': filter_x, 'ScaleX': scale_x, 'BiasX': bias_x, 'MeanX': mean_x, 'VarX': var_x, 'Z': z, 'FilterZ': filter_z, 'ScaleZ': scale_z, 'BiasZ': bias_z, 'MeanZ': mean_z, 'VarZ': var_z } attrs = { 'stride': stride, 'stride_z': stride_z, 'padding': padding, 'dilation': dilation, 'group': groups, 'momentum': momentum, 'epsilon': eps, 'data_format': data_format, 'fuse_add': fuse_add, 'has_shortcut': has_shortcut, 'use_global_stats': use_global_stats, 'is_test': is_test, 'act_type': act } outputs = { 'Y': out, 'BitMask': bit_mask, 'ConvX': conv_x, 'SavedMeanX': saved_mean_x, 'SavedInvstdX': saved_invstd_x, 'RunningMeanX': running_mean_x, 'RunningVarX': running_var_x, 'ConvZ': conv_z, 'SavedMeanZ': saved_mean_z, 'SavedInvstdZ': saved_invstd_z, 'RunningMeanZ': running_mean_z, 'RunningVarZ': running_var_z, } helper.append_op(type='resnet_unit', inputs=inputs, outputs=outputs, attrs=attrs) return out class ResNetUnit(Layer): r""" ******Temporary version******. ResNetUnit is designed for optimize the performence by using cudnnv8 API. """ def __init__(self, num_channels_x, num_filters, filter_size, stride=1, momentum=0.9, eps=1e-5, data_format='NHWC', act='relu', fuse_add=False, has_shortcut=False, use_global_stats=False, is_test=False, filter_x_attr=None, scale_x_attr=None, bias_x_attr=None, moving_mean_x_name=None, moving_var_x_name=None, num_channels_z=1, stride_z=1, filter_z_attr=None, scale_z_attr=None, bias_z_attr=None, moving_mean_z_name=None, moving_var_z_name=None): super(ResNetUnit, self).__init__() self._stride = stride self._stride_z = stride_z self._dilation = 1 self._kernel_size = utils.convert_to_list(filter_size, 2, 'kernel_size') self._padding = (filter_size - 1) // 2 self._groups = 1 self._momentum = momentum self._eps = eps self._data_format = data_format self._act = act self._fuse_add = fuse_add self._has_shortcut = has_shortcut self._use_global_stats = use_global_stats self._is_test = is_test # check format valid_format = {'NHWC', 'NCHW'} if data_format not in valid_format: raise ValueError( "conv_format must be one of {}, but got conv_format='{}'". format(valid_format, data_format)) def _get_default_param_initializer(channels): filter_elem_num = np.prod(self._kernel_size) * channels std = (2.0 / filter_elem_num)**0.5 return I.Normal(0.0, std) is_nchw = (data_format == 'NCHW') # initial filter bn_param_dtype = fluid.core.VarDesc.VarType.FP32 if not is_nchw: bn_param_shape = [1, 1, 1, num_filters] filter_x_shape = [ num_filters, filter_size, filter_size, num_channels_x ] filter_z_shape = [ num_filters, filter_size, filter_size, num_channels_z ] else: bn_param_shape = [1, num_filters, 1, 1] filter_x_shape = [ num_filters, num_channels_x, filter_size, filter_size ] filter_z_shape = [ num_filters, num_channels_z, filter_size, filter_size ] self.filter_x = self.create_parameter( shape=filter_x_shape, attr=filter_x_attr, default_initializer=_get_default_param_initializer(num_channels_x)) self.scale_x = self.create_parameter( shape=bn_param_shape, attr=scale_x_attr, dtype=bn_param_dtype, default_initializer=I.Constant(1.0)) self.bias_x = self.create_parameter(shape=bn_param_shape, attr=bias_x_attr, dtype=bn_param_dtype, is_bias=True) self.mean_x = self.create_parameter(attr=ParamAttr( name=moving_mean_x_name, initializer=I.Constant(0.0), trainable=False), shape=bn_param_shape, dtype=bn_param_dtype) self.mean_x.stop_gradient = True self.var_x = self.create_parameter(attr=ParamAttr( name=moving_var_x_name, initializer=I.Constant(1.0), trainable=False), shape=bn_param_shape, dtype=bn_param_dtype) self.var_x.stop_gradient = True if has_shortcut: self.filter_z = self.create_parameter( shape=filter_z_shape, attr=filter_z_attr, default_initializer=_get_default_param_initializer( num_channels_z)) self.scale_z = self.create_parameter( shape=bn_param_shape, attr=scale_z_attr, dtype=bn_param_dtype, default_initializer=I.Constant(1.0)) self.bias_z = self.create_parameter(shape=bn_param_shape, attr=bias_z_attr, dtype=bn_param_dtype, is_bias=True) self.mean_z = self.create_parameter(attr=ParamAttr( name=moving_mean_z_name, initializer=I.Constant(0.0), trainable=False), shape=bn_param_shape, dtype=bn_param_dtype) self.mean_z.stop_gradient = True self.var_z = self.create_parameter(attr=ParamAttr( name=moving_var_z_name, initializer=I.Constant(1.0), trainable=False), shape=bn_param_shape, dtype=bn_param_dtype) self.var_z.stop_gradient = True else: self.filter_z = None self.scale_z = None self.bias_z = None self.mean_z = None self.var_z = None def forward(self, x, z=None): if self._fuse_add and z is None: raise ValueError("z can not be None") out = resnet_unit(x, self.filter_x, self.scale_x, self.bias_x, self.mean_x, self.var_x, z, self.filter_z, self.scale_z, self.bias_z, self.mean_z, self.var_z, self._stride, self._stride_z, self._padding, self._dilation, self._groups, self._momentum, self._eps, self._data_format, self._fuse_add, self._has_shortcut, self._use_global_stats, self._is_test, self._act) return out