/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/platform/device_context.h" namespace paddle { namespace operators { namespace math { template using EigenMatrix = framework::EigenMatrix; template class CopyMatrixRowsFunctor { public: // If is_src_index is true, // copy the indexed rows of input src to the output dst. // If is_src_index is false, // copy the input src to the indexed rows of output dst. // The indexed rows are based on the input index. void operator()(const DeviceContext& context, const framework::Tensor& src, framework::Vector index_lod, framework::Tensor& dst, bool is_src_index); }; template class LoDTensor2BatchFunctor { // Calculate the length of each sequence and // sort sequence index by the length. // example: sequences = {s0, s1, s2} // s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2 // seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)} // struct SeqInfo { SeqInfo(int start, int length, int seq_idx) : start(start), length(length), seq_idx(seq_idx) {} int start; int length; int seq_idx; }; public: void operator()(const DeviceContext& context, const framework::LoDTensor& lod_tensor, framework::LoDTensor& batch, bool is_cal_batch_lod, bool is_reverse = false) const { if (!is_cal_batch_lod) { auto lods = batch.lod(); PADDLE_ENFORCE_GT(lods.size(), 2UL); PADDLE_ENFORCE_EQ(lods[1].size(), static_cast(lod_tensor.dims()[0])); CopyMatrixRowsFunctor to_batch; to_batch(context, lod_tensor, lods[1], batch, true); return; } auto lods = lod_tensor.lod(); auto lod = lods[0]; PADDLE_ENFORCE_EQ(lods.size(), 1UL, "Only support one level sequence now."); std::vector seq_info; for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) { int length = lod[seq_id + 1] - lod[seq_id]; seq_info.emplace_back(lod[seq_id], length, seq_id); } std::sort(seq_info.begin(), seq_info.end(), [](SeqInfo a, SeqInfo b) { return a.length > b.length; }); // Calculate the start position of each batch. // example: sequences = {s0, s1, s2} // s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2 // num_batch = 5, // batchIndex = {b0, b1, b2, b3, b4} // b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1 // batch_start_positions[6] = {0, 3, 6, 9, 11, 12} // batch_start_positions[0] = len(b0) // batch_start_positions[1] = len(b0) + len(b1) // batch_start_positions[2] = len(b0) + len(b1) + len(b2) // ... // seq2batch_idx[12] = {4, 0, 9, // 5, 1, 10, // 6, 2, 11, // 7, 3, // 8} // seq_order = {1, 0, 2}, the sort order. // where 1 is the second sequence, // 0 is the first sequence, // 2 is the third sequence. // The num_batch represents batch size after rearranging the // input LodTensor. It is also the maximum length of input sequence. paddle::framework::LoD batch_lods; batch_lods.emplace_back(std::vector{0}); batch_lods.emplace_back(std::vector{0}); batch_lods.emplace_back(std::vector{0}); // batch_lods[0] is the start positions for batch LoDTensor int num_batch = seq_info[0].length; batch_lods[0].resize(static_cast(num_batch + 1)); // batch_lods[1] is the raw index in the input LoDTensor batch_lods[1].resize(static_cast(lod_tensor.dims()[0])); // batch_lods[2] is the sort order for the input LoDTensor. batch_lods[2].resize(seq_info.size()); size_t* batch_starts = batch_lods[0].data(); size_t* seq2batch_idx = batch_lods[1].data(); batch_starts[0] = 0; for (int n = 0; n < num_batch; n++) { auto batch_id = static_cast(batch_starts[n]); for (size_t i = 0; i < seq_info.size(); ++i) { int seq_len = seq_info[i].length; int start = seq_info[i].start; if (n < seq_len) { seq2batch_idx[batch_id] = is_reverse ? start + seq_len - 1 - n : start + n; batch_id++; } else { break; } } batch_starts[n + 1] = static_cast(batch_id); } size_t* seq_order = batch_lods[2].data(); for (size_t i = 0; i < seq_info.size(); ++i) { seq_order[i] = seq_info[i].seq_idx; } batch.set_lod(batch_lods); CopyMatrixRowsFunctor to_batch; to_batch(context, lod_tensor, batch_lods[1], batch, true); } }; template class Batch2LoDTensorFunctor { public: void operator()(const DeviceContext& context, const framework::LoDTensor& batch, framework::LoDTensor& lod_tensor) const { auto in_lod = batch.lod(); PADDLE_ENFORCE_GT(in_lod.size(), 2UL); PADDLE_ENFORCE_EQ(in_lod[1].size(), static_cast(lod_tensor.dims()[0])); CopyMatrixRowsFunctor to_seq; to_seq(context, batch, in_lod[1], lod_tensor, false); } }; } // namespace math } // namespace operators } // namespace paddle