/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { template struct ReLU { HOSTDEVICE T operator()(const T& val) const { return val > 0 ? val : static_cast(0); } }; template struct Heaviside { HOSTDEVICE T operator()(const T& val) const { return static_cast(val > 0 ? 1 : 0); } }; template class MarginRankLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { auto* out_t = ctx.Output("Out"); auto* act_t = ctx.Output("Activated"); auto* label_t = ctx.Input("Label"); auto* x1_t = ctx.Input("X1"); auto* x2_t = ctx.Input("X2"); out_t->mutable_data(ctx.GetPlace()); act_t->mutable_data(ctx.GetPlace()); auto margin = static_cast(ctx.Attr("margin")); auto out = framework::EigenVector::Flatten(*out_t); auto act = framework::EigenVector::Flatten(*act_t); auto label = framework::EigenVector::Flatten(*label_t); auto x1 = framework::EigenVector::Flatten(*x1_t); auto x2 = framework::EigenVector::Flatten(*x2_t); auto& dev = *ctx.template device_context().eigen_device(); out.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(ReLU()); act.device(dev) = out.unaryExpr(Heaviside()); } }; template class MarginRankLossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { auto* d_x1_t = ctx.Output(framework::GradVarName("X1")); auto* d_x2_t = ctx.Output(framework::GradVarName("X2")); auto* act_t = ctx.Input("Activated"); auto* d_out_t = ctx.Input(framework::GradVarName("Out")); auto* label_t = ctx.Input("Label"); auto d_out = framework::EigenVector::Flatten(*d_out_t); auto act = framework::EigenVector::Flatten(*act_t); auto label = framework::EigenVector::Flatten(*label_t); auto& dev = *ctx.template device_context().eigen_device(); // compute d_x1 if (d_x1_t) { d_x1_t->mutable_data(ctx.GetPlace()); auto d_x1 = framework::EigenVector::Flatten(*d_x1_t); d_x1.device(dev) = -d_out * act * label; } // compute d_x2 if (d_x2_t) { d_x2_t->mutable_data(ctx.GetPlace()); auto d_x2 = framework::EigenVector::Flatten(*d_x2_t); d_x2.device(dev) = d_out * act * label; } } }; } // namespace operators } // namespace paddle