1. 15 6月, 2018 1 次提交
  2. 11 6月, 2018 1 次提交
  3. 07 6月, 2018 2 次提交
    • X
      Refine API doc string · e80c6b3c
      Xin Pan 提交于
      e80c6b3c
    • M
      Mkldnn layout (#11040) · 3ff9ba0e
      mozga-intel 提交于
      * Add MKLDNN layout support in Paddle
      
      Add MKLDNN layout in Paddle so that MKLDNN friendly memory layout
      can be used in MKLDNN enabled OP kernel. Before this commit, NCHW
      is hardcode to be used in all MKLDNN op kernels. As a result,
      non-optimized execution path is selected in MKLDNN primitive which
      bring worse performance.
      Besides framework change, three MKLDNN OP kernels were updated
      for using new MKLDNN layout. They are conv/pool2d/batch_norm.
      Other MKLDNN OP kernels need be also updated in similar way to
      achieve best performance.
      
      * Add MKLDNN layout support in activation OP
      
      * Don't populate layout from input to output when kMKLDNN in
      
      * Refine pool mkldnn op kernel
      
      * MKLDNN layout
      
      * Remove the inferitance from tensor file
      
      * MKLDNN layout: refactoring
      
      * Remove additional #define to register new operator
      
      * Prepare mkldnn tests to work with layout
      3ff9ba0e
  4. 21 5月, 2018 2 次提交
  5. 08 5月, 2018 1 次提交
    • Y
      Clean OpProtoAndCheckerMaker · 0e78cb69
      Yu Yang 提交于
      Do not use ctor
      
      * Reduce line of codes.
      * We can use virtual function for Maker now.
      * The implementation does not care what maker holds, it is easier to
      refactor later.
      0e78cb69
  6. 21 4月, 2018 1 次提交
  7. 19 4月, 2018 1 次提交
  8. 18 4月, 2018 2 次提交
  9. 17 4月, 2018 2 次提交
  10. 16 4月, 2018 2 次提交
  11. 10 4月, 2018 1 次提交
  12. 29 3月, 2018 1 次提交
  13. 28 3月, 2018 1 次提交
  14. 23 3月, 2018 3 次提交
  15. 21 3月, 2018 1 次提交
  16. 12 2月, 2018 1 次提交
  17. 10 2月, 2018 2 次提交
  18. 26 12月, 2017 2 次提交
  19. 20 12月, 2017 1 次提交
  20. 12 12月, 2017 1 次提交
    • Q
      Refine device context (#6433) · 61ec0b95
      QI JUN 提交于
      There are mainly following fixes:
      
      - take `DeviceContext` as the template parameter of math functors and OpKernel instead of `Place`
      - remove `eigen_device` interface in base class  `DeviceContext`
      - remove `GetEigenDevice` interface in `ExecutionContext` and base class `DeviceContext`
      - remove unused `platform::EigenDeviceConverter`
      - rename `REGISTER_OP_GPU_KERNEL` to `REGISTER_OP_CUDA_KERNEL`
      - rename `USE_GPU_ONLY_OP` to `USE_CUDA_ONLY_OP`
      61ec0b95
  21. 07 12月, 2017 1 次提交
  22. 06 12月, 2017 1 次提交
  23. 26 11月, 2017 1 次提交
  24. 21 11月, 2017 1 次提交
  25. 05 11月, 2017 1 次提交
  26. 03 11月, 2017 1 次提交
  27. 27 10月, 2017 1 次提交
    • Y
      Gradient check use graph (#5027) · be00b0c4
      Yu Yang 提交于
      * Simplize Gradient Check
      
      * Stash
      
      * Extract apply_backward_pass to backward.py
      
      Rename apply_backward_pass to append_backward_ops
      
      * Use graph API to check gradient
      
      * Fix ci
      
      * Fix CI
      
      * Fix backward for double precision
      
      * Stash
      
      * Fix CI
      
      * Fix ci
      
      * Ignore GRU test
      
      * Ignore xe op
      
      * Fix CI
      
      * Fix softmax with xe gradient
      
      The correct equation should be IG = OG * (d_softmax_with_xe())
      
      * Fix typo
      
      * Fix merge error
      
      * Disable LRN
      be00b0c4
  28. 17 10月, 2017 1 次提交
  29. 13 10月, 2017 1 次提交
  30. 12 10月, 2017 1 次提交
  31. 11 10月, 2017 1 次提交