From fff9faae72b4b4dedca3bb30bc8384a686ed42dd Mon Sep 17 00:00:00 2001 From: liu zhengxi <380185688@qq.com> Date: Fri, 15 May 2020 20:52:03 +0800 Subject: [PATCH] API(dynamic_gru, chunk_eval, BeamSearchDecoder) error message enhancement (#24513) * dynamic_gru err_msg enhancement, test=develop * chunk_eval err_msg enhancement and fix crf_decoding output type, test=develop * BeamSearchDecoder err msg enhancement, test=develop * fix doc for chunk_eval, test=develop * refine lod err msg for chunk_eval, test=develop --- paddle/fluid/operators/chunk_eval_op.cc | 61 ++++---- paddle/fluid/operators/chunk_eval_op.h | 22 ++- paddle/fluid/operators/gru_op.cc | 139 +++++++++++------- paddle/fluid/operators/lstm_op.h | 8 +- paddle/fluid/operators/lstmp_op.h | 6 +- python/paddle/fluid/layers/nn.py | 13 +- python/paddle/fluid/layers/rnn.py | 27 +++- .../tests/unittests/test_chunk_eval_op.py | 43 ++++++ .../fluid/tests/unittests/test_gru_op.py | 21 +++ 9 files changed, 244 insertions(+), 96 deletions(-) diff --git a/paddle/fluid/operators/chunk_eval_op.cc b/paddle/fluid/operators/chunk_eval_op.cc index 2987deda54e..dfb0ad96b0b 100644 --- a/paddle/fluid/operators/chunk_eval_op.cc +++ b/paddle/fluid/operators/chunk_eval_op.cc @@ -24,45 +24,48 @@ class ChunkEvalOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { - PADDLE_ENFORCE_EQ(ctx->HasInput("Inference"), true, - "Input(Inference) of ChunkEvalOp should not be null."); - PADDLE_ENFORCE_EQ(ctx->HasInput("Label"), true, - "Input(Label) of ChunkEvalOp should not be null."); - PADDLE_ENFORCE_EQ(ctx->HasOutput("Precision"), true, - "Output(Precision) of ChunkEvalOp should not be null."); - PADDLE_ENFORCE_EQ(ctx->HasOutput("Recall"), true, - "Output(Recall) of ChunkEvalOp should not be null."); - PADDLE_ENFORCE_EQ(ctx->HasOutput("F1-Score"), true, - "Output(F1-Score) of ChunkEvalOp should not be null."); - PADDLE_ENFORCE_EQ( - ctx->HasOutput("NumInferChunks"), true, - "Output(NumInferChunks) of ChunkEvalOp should not be null."); - PADDLE_ENFORCE_EQ( - ctx->HasOutput("NumLabelChunks"), true, - "Output(NumLabelChunks) of ChunkEvalOp should not be null."); - PADDLE_ENFORCE_EQ( - ctx->HasOutput("NumCorrectChunks"), true, - "Output(NumCorrectChunks) of ChunkEvalOp should not be null."); + OP_INOUT_CHECK(ctx->HasInput("Inference"), "Input", "Inference", + "chunk_eval"); + OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "chunk_eval"); + + OP_INOUT_CHECK(ctx->HasOutput("Precision"), "Output", "Precision", + "chunk_eval"); + OP_INOUT_CHECK(ctx->HasOutput("Recall"), "Output", "Recall", "chunk_eval"); + OP_INOUT_CHECK(ctx->HasOutput("F1-Score"), "Output", "F1-Score", + "chunk_eval"); + OP_INOUT_CHECK(ctx->HasOutput("NumInferChunks"), "Output", "NumInferChunks", + "chunk_eval"); + OP_INOUT_CHECK(ctx->HasOutput("NumLabelChunks"), "Output", "NumLabelChunks", + "chunk_eval"); + OP_INOUT_CHECK(ctx->HasOutput("NumCorrectChunks"), "Output", + "NumCorrectChunks", "chunk_eval"); auto inference_dim = ctx->GetInputDim("Inference"); auto label_dim = ctx->GetInputDim("Label"); PADDLE_ENFORCE_EQ( inference_dim, label_dim, - "Input(Inference)'s shape must be the same as Input(Label)'s shape."); + platform::errors::InvalidArgument( + "Input(Inference)'s shape must be the same as Input(Label)'s " + "shape, but received [%s] (Inference) vs [%s] (Label).", + inference_dim, label_dim)); bool use_padding = ctx->HasInput("SeqLength"); if (use_padding) { - PADDLE_ENFORCE_EQ((inference_dim.size() == 3 && inference_dim[2] == 1) || - inference_dim.size() == 2, - true, - "when Input(SeqLength) is provided, Input(Inference) " - "should be of dim 3 (batch_size, bucket, 1) or dim 2 " - "(batch_size, bucket)."); + PADDLE_ENFORCE_EQ( + (inference_dim.size() == 3 && inference_dim[2] == 1) || + inference_dim.size() == 2, + true, platform::errors::InvalidArgument( + "when Input(SeqLength) is provided, Input(Inference) " + "should be of dim 3 (batch_size, bucket, 1) or dim 2 " + "(batch_size, bucket), but received [%s].", + inference_dim)); auto seq_length_dim = ctx->GetInputDim("SeqLength"); - PADDLE_ENFORCE_LE( - seq_length_dim.size(), 2, - "Input(SeqLength)'s rank should not be greater than 2."); + PADDLE_ENFORCE_LE(seq_length_dim.size(), 2, + platform::errors::InvalidArgument( + "Input(SeqLength)'s rank should not be greater " + "than 2, but received %d.", + seq_length_dim.size())); } ctx->SetOutputDim("Precision", {1}); diff --git a/paddle/fluid/operators/chunk_eval_op.h b/paddle/fluid/operators/chunk_eval_op.h index 63c77e52fb0..bee3ab37448 100644 --- a/paddle/fluid/operators/chunk_eval_op.h +++ b/paddle/fluid/operators/chunk_eval_op.h @@ -51,7 +51,13 @@ class ChunkEvalKernel : public framework::OpKernel { for (int i = 0; i < length; ++i) { int prev_tag = tag; int prev_type = type; - PADDLE_ENFORCE_LE(label[i], num_chunk_types * num_tag_types); + PADDLE_ENFORCE_LE( + label[i], num_chunk_types * num_tag_types, + platform::errors::InvalidArgument( + "The value of Input(Label) should be less than the number of " + "chunk types times the number of tag types, but received %d " + "(Label) vs %d (chunk types) * %d (tag types).", + label[i], num_chunk_types, num_tag_types)); tag = label[i] % num_tag_types; type = label[i] / num_tag_types; if (in_chunk && ChunkEnd(prev_tag, prev_type, tag, type, other_chunk_type, @@ -191,10 +197,16 @@ class ChunkEvalKernel : public framework::OpKernel { tag_inside, tag_end, tag_single, excluded_chunk_types); } } else { - PADDLE_ENFORCE_EQ(lod.size(), 1UL, - "Only support one level sequence now."); - PADDLE_ENFORCE(lod == inference->lod(), - "LoD must be same between Inference and Label."); + PADDLE_ENFORCE_EQ( + lod.size(), 1UL, + platform::errors::InvalidArgument( + "Only support one level LoD sequence now, but received %d.", + lod.size())); + PADDLE_ENFORCE_EQ( + lod, inference->lod(), + platform::errors::InvalidArgument( + "Input(Inference) and Input(Label) of Op(chunk_eval) should have " + "same LoD information.")); num_sequences = lod[0].size() - 1; for (int i = 0; i < num_sequences; ++i) { diff --git a/paddle/fluid/operators/gru_op.cc b/paddle/fluid/operators/gru_op.cc index 98d12850b89..a9c3612d601 100644 --- a/paddle/fluid/operators/gru_op.cc +++ b/paddle/fluid/operators/gru_op.cc @@ -31,44 +31,58 @@ class GRUOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("Input"), - "Input(%s) of GRUOp should not be null.", "Input"); - PADDLE_ENFORCE(ctx->HasInput("Weight"), - "Input(%s) of GRUOp should not be null.", "Weight"); - PADDLE_ENFORCE(ctx->HasOutput("BatchGate"), - "Output(%s) of GRUOp should not be null.", "BatchGate"); - PADDLE_ENFORCE(ctx->HasOutput("BatchResetHiddenPrev"), - "Output(%s) of GRUOp should not be null.", - "BatchResetHiddenPrev"); - PADDLE_ENFORCE(ctx->HasOutput("BatchHidden"), - "Output(%s) of GRUOp should not be null.", "BatchHidden"); - PADDLE_ENFORCE(ctx->HasOutput("Hidden"), - "Output(%s) of GRUOp should not be null.", "Hidden"); + OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "GRU"); + OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "GRU"); + OP_INOUT_CHECK(ctx->HasOutput("BatchGate"), "Output", "BatchGate", "GRU"); + OP_INOUT_CHECK(ctx->HasOutput("BatchResetHiddenPrev"), "Output", + "BatchResetHiddenPrev", "GRU"); + OP_INOUT_CHECK(ctx->HasOutput("BatchHidden"), "Output", "BatchHidden", + "GRU"); + OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "GRU"); + auto input_dims = ctx->GetInputDim("Input"); auto weight_dims = ctx->GetInputDim("Weight"); int input_size = input_dims[1]; int frame_size = weight_dims[0]; if (ctx->IsRuntime()) { - PADDLE_ENFORCE_EQ( - input_size, frame_size * 3, - "The input_size must be 3 times of frame_size in GRUOp."); + PADDLE_ENFORCE_EQ(input_size, frame_size * 3, + platform::errors::InvalidArgument( + "The second dimension of Input(Input) must be 3 " + "times of frame_size in GRUOp, but received %d " + "(Input) vs %d (frame_size).", + input_size, frame_size)); } PADDLE_ENFORCE_EQ( weight_dims[1], frame_size * 3, - "The shape of Weight matrix must be [frame_size, frame_size * 3]."); + platform::errors::InvalidArgument( + "The shape of Input(Weight) matrix must be [frame_size, frame_size " + "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).", + weight_dims[0], weight_dims[1], frame_size, frame_size * 3)); if (ctx->HasInput("H0")) { auto h0_dims = ctx->GetInputDim("H0"); - PADDLE_ENFORCE_EQ(h0_dims[1], frame_size, - "The width of H0 must be equal to frame_size."); + PADDLE_ENFORCE_EQ( + h0_dims[1], frame_size, + platform::errors::InvalidArgument( + "The width of Input(H0) must be equal to frame_size, but " + "received %d (width of H0) vs %d (frame_size).", + h0_dims[1], frame_size)); } if (ctx->HasInput("Bias")) { auto bias_dims = ctx->GetInputDim("Bias"); int bias_height = bias_dims[0]; int bias_width = bias_dims[1]; - PADDLE_ENFORCE_EQ(bias_height, 1, - "The shape of Bias must be [1, frame_size * 3]."); - PADDLE_ENFORCE_EQ(bias_width, frame_size * 3, - "The shape of Bias must be [1, frame_size * 3]."); + PADDLE_ENFORCE_EQ( + bias_height, 1, + platform::errors::InvalidArgument( + "The shape of Bias must be [1, frame_size * 3], but received " + "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).", + bias_height, bias_width, frame_size * 3)); + PADDLE_ENFORCE_EQ( + bias_width, frame_size * 3, + platform::errors::InvalidArgument( + "The shape of Bias must be [1, frame_size * 3], but received " + "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).", + bias_height, bias_width, frame_size * 3)); } ctx->SetOutputDim("BatchGate", input_dims); ctx->SetOutputDim("BatchResetHiddenPrev", {input_dims[0], frame_size}); @@ -166,39 +180,50 @@ class GRUGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("Input"), - "Input(%s) of GRUGradOp should not be null.", "Input"); - PADDLE_ENFORCE(ctx->HasInput("Weight"), - "Input(%s) of GRUGradOp should not be null.", "Weight"); - PADDLE_ENFORCE(ctx->HasInput("BatchGate"), - "Input(%s) of GRUGradOp should not be null.", "BatchGate"); - PADDLE_ENFORCE(ctx->HasInput("BatchResetHiddenPrev"), - "Input(%s) of GRUGradOp should not be null.", - "BatchResetHiddenPrev"); - PADDLE_ENFORCE(ctx->HasInput("BatchHidden"), - "Input(%s) of GRUOp should not be null.", "BatchHidden"); - PADDLE_ENFORCE(ctx->HasInput("Hidden"), - "Input(%s) of GRUGradOp should not be null.", "Hidden"); - PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Hidden")), - "Input(%s@GRAD) of GRUGradOp should not be null.", "Hidden"); + OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "GRU@Grad"); + OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "GRU@Grad"); + OP_INOUT_CHECK(ctx->HasInput("BatchGate"), "Input", "BatchGate", + "GRU@Grad"); + OP_INOUT_CHECK(ctx->HasInput("BatchResetHiddenPrev"), "Input", + "BatchResetHiddenPrev", "GRU@Grad"); + OP_INOUT_CHECK(ctx->HasInput("BatchHidden"), "Input", "BatchHidden", + "GRU@Grad"); + OP_INOUT_CHECK(ctx->HasInput("Hidden"), "Input", "Hidden", "GRU@Grad"); + OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Hidden")), "Input", + framework::GradVarName("Hidden"), "GRU@Grad"); + auto input_dims = ctx->GetInputDim("Input"); auto weight_dims = ctx->GetInputDim("Weight"); int input_size = input_dims[1]; int frame_size = weight_dims[0]; int weight_height = weight_dims[0]; int weight_width = weight_dims[1]; - PADDLE_ENFORCE_EQ(input_size, frame_size * 3, - "The input_size must be 3 times of frame_size in GRUOp."); + PADDLE_ENFORCE_EQ( + input_size, frame_size * 3, + platform::errors::InvalidArgument( + "The second dimension of Input(Input) must be 3 times of " + "frame_size in GRUOp, but received %d (Input) vs %d (frame_size).", + input_size, frame_size)); PADDLE_ENFORCE_EQ( weight_height, frame_size, - "The shape of Weight matrix must be [frame_size, frame_size * 3]."); + platform::errors::InvalidArgument( + "The shape of Input(Weight) matrix must be [frame_size, frame_size " + "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).", + weight_height, weight_width, frame_size, frame_size * 3)); PADDLE_ENFORCE_EQ( weight_width, frame_size * 3, - "The shape of Weight matrix must be [frame_size, frame_size * 3]."); + platform::errors::InvalidArgument( + "The shape of Input(Weight) matrix must be [frame_size, frame_size " + "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).", + weight_height, weight_width, frame_size, frame_size * 3)); if (ctx->HasInput("H0")) { auto h0_dims = ctx->GetInputDim("H0"); - PADDLE_ENFORCE_EQ(h0_dims[1], frame_size, - "The width of H0 must be equal to frame_size."); + PADDLE_ENFORCE_EQ( + h0_dims[1], frame_size, + platform::errors::InvalidArgument( + "The width of Input(H0) must be equal to frame_size, but " + "received %d (width of H0) vs %d (frame_size).", + h0_dims[1], frame_size)); auto h0_grad_name = framework::GradVarName("H0"); if (ctx->HasOutput(h0_grad_name)) ctx->SetOutputDim(h0_grad_name, h0_dims); @@ -207,10 +232,18 @@ class GRUGradOp : public framework::OperatorWithKernel { auto bias_dims = ctx->GetInputDim("Bias"); int bias_height = bias_dims[0]; int bias_width = bias_dims[1]; - PADDLE_ENFORCE_EQ(bias_height, 1, - "The shape of Bias must be [1, frame_size * 3]."); - PADDLE_ENFORCE_EQ(bias_width, frame_size * 3, - "The shape of Bias must be [1, frame_size * 3]."); + PADDLE_ENFORCE_EQ( + bias_height, 1, + platform::errors::InvalidArgument( + "The shape of Bias must be [1, frame_size * 3], but received " + "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).", + bias_height, bias_width, frame_size * 3)); + PADDLE_ENFORCE_EQ( + bias_width, frame_size * 3, + platform::errors::InvalidArgument( + "The shape of Bias must be [1, frame_size * 3], but received " + "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).", + bias_height, bias_width, frame_size * 3)); auto bias_grad_name = framework::GradVarName("Bias"); if (ctx->HasOutput(bias_grad_name)) ctx->SetOutputDim(bias_grad_name, bias_dims); @@ -298,14 +331,20 @@ class GRUCPUKernel : public framework::OpKernel { T* packed_gate = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/, frame_size * 2 /*width of weight*/, frame_size /*height of height*/); - PADDLE_ENFORCE(packed_gate); + PADDLE_ENFORCE_NOT_NULL( + packed_gate, platform::errors::NotFound( + "The caculation result of packed_gate by " + "GEMM_ALLOC should not be null when using MKL.")); blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size * 2, frame_size, T(1.0), gru_value.gate_weight, frame_size * 2, packed_gate); T* packed_state = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/, frame_size /*width of weight*/, frame_size /*height of height*/); - PADDLE_ENFORCE(packed_state); + PADDLE_ENFORCE_NOT_NULL( + packed_state, platform::errors::NotFound( + "The caculation result of packed_state by " + "GEMM_ALLOC should not be null when using MKL.")); blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size, frame_size, T(1.0), gru_value.state_weight, frame_size, packed_state); diff --git a/paddle/fluid/operators/lstm_op.h b/paddle/fluid/operators/lstm_op.h index ca998826dd0..a4434283abb 100644 --- a/paddle/fluid/operators/lstm_op.h +++ b/paddle/fluid/operators/lstm_op.h @@ -219,7 +219,13 @@ class LSTMGradKernel : public framework::OpKernel { auto in_dims = input->dims(); auto out_dims = hidden_g->dims(); int frame_size = static_cast(in_dims[1] / 4); - PADDLE_ENFORCE_EQ(frame_size, out_dims[1]); + PADDLE_ENFORCE_EQ( + frame_size, out_dims[1], + platform::errors::InvalidArgument( + "The second dimension of Input(" + + framework::GradVarName("Hidden") + + ") should be %d, but received %d in LSTM@Grad operator.", + frame_size, out_dims[1])); math::LstmMetaValue lstm_value; if (bias && ctx.Attr("use_peepholes")) { diff --git a/paddle/fluid/operators/lstmp_op.h b/paddle/fluid/operators/lstmp_op.h index 36da882639a..f0a727f34fe 100644 --- a/paddle/fluid/operators/lstmp_op.h +++ b/paddle/fluid/operators/lstmp_op.h @@ -327,7 +327,11 @@ class LSTMPGradKernel : public framework::OpKernel { auto out_dims = cell_out->dims(); framework::DDim proj_dims({in_dims[0], proj_weight->dims()[1]}); int frame_size = static_cast(in_dims[1] / 4); - PADDLE_ENFORCE_EQ(frame_size, out_dims[1]); + PADDLE_ENFORCE_EQ(frame_size, out_dims[1], + platform::errors::InvalidArgument( + "The second dimension of Input(Cell) should be %d, " + "but received %d in LSTMP@Grad operator.", + frame_size, out_dims[1])); math::LstmMetaValue lstmp_value; if (bias && ctx.Attr("use_peepholes")) { diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 0f4a50ce8ab..d9adf5deb0e 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -875,7 +875,7 @@ def crf_decoding(input, param_attr, label=None, length=None): helper = LayerHelper('crf_decoding', **locals()) transition = helper.get_parameter(param_attr.name) viterbi_path = helper.create_variable_for_type_inference( - dtype=helper.input_dtype()) + dtype=core.VarDesc.VarType.INT64) inputs = {"Emission": [input], "Transition": transition, "Label": label} if length: inputs['Length'] = length @@ -1125,12 +1125,12 @@ def chunk_eval(input, dict_size = 10000 label_dict_len = 7 sequence = fluid.data( - name='id', shape=[-1, 1], lod_level=1, dtype='int64') + name='id', shape=[None, 1], lod_level=1, dtype='int64') embedding = fluid.embedding( input=sequence, size=[dict_size, 512]) hidden = fluid.layers.fc(input=embedding, size=512) - label = fluid.layers.data( - name='label', shape=[1], lod_level=1, dtype='int32') + label = fluid.data( + name='label', shape=[None, 1], lod_level=1, dtype='int64') crf = fluid.layers.linear_chain_crf( input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw")) crf_decode = fluid.layers.crf_decoding( @@ -1139,10 +1139,13 @@ def chunk_eval(input, input=crf_decode, label=label, chunk_scheme="IOB", - num_chunk_types=(label_dict_len - 1) / 2) + num_chunk_types=int((label_dict_len - 1) / 2)) """ helper = LayerHelper("chunk_eval", **locals()) + check_variable_and_dtype(input, 'input', ['int64'], 'chunk_eval') + check_variable_and_dtype(label, 'label', ['int64'], 'chunk_eval') + # prepare output precision = helper.create_variable_for_type_inference(dtype="float32") recall = helper.create_variable_for_type_inference(dtype="float32") diff --git a/python/paddle/fluid/layers/rnn.py b/python/paddle/fluid/layers/rnn.py index 25048cfd5d3..89d9fc3db89 100644 --- a/python/paddle/fluid/layers/rnn.py +++ b/python/paddle/fluid/layers/rnn.py @@ -790,6 +790,8 @@ class BeamSearchDecoder(Decoder): Variable: A tensor with shape `[batch_size * beam_size, ...]`, whose \ data type is same as `x`. """ + check_type(x, 'x', (Variable), + 'BeamSearchDecoder.tile_beam_merge_with_batch') x = nn.unsqueeze(x, [1]) # [batch_size, 1, ...] expand_times = [1] * len(x.shape) expand_times[1] = beam_size @@ -818,6 +820,7 @@ class BeamSearchDecoder(Decoder): Variable: A tensor with shape `[batch_size, beam_size, ...]`, whose \ data type is same as `x`. """ + check_type(x, 'x', (Variable), 'BeamSearchDecoder._split_batch_beams') # TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch return nn.reshape(x, shape=[-1, self.beam_size] + list(x.shape[1:])) @@ -834,6 +837,7 @@ class BeamSearchDecoder(Decoder): Variable: A tensor with shape `[batch_size * beam_size, ...]`, whose \ data type is same as `x`. """ + check_type(x, 'x', (Variable), 'BeamSearchDecoder._merge_batch_beams') # TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch return nn.reshape(x, shape=[-1] + list(x.shape[2:])) @@ -846,16 +850,14 @@ class BeamSearchDecoder(Decoder): `beam_size` times. Parameters: - probs(Variable): A tensor with shape `[batch_size, ...]`, representing - the log probabilities. Its data type should be float32 or float64. - finished(Variable): A tensor with shape `[batch_size, beam_size]`, - representing the finished status for all beams. Its data type - should be bool. + x(Variable): A tensor with shape `[batch_size, ...]`, The data type + should be float32, float64, int32, int64 or bool. Returns: Variable: A tensor with shape `[batch_size, beam_size, ...]`, whose \ data type is same as `x`. """ + check_type(x, 'x', (Variable), 'BeamSearchDecoder._expand_to_beam_size') x = nn.unsqueeze(x, [1]) expand_times = [1] * len(x.shape) expand_times[1] = self.beam_size @@ -879,6 +881,9 @@ class BeamSearchDecoder(Decoder): where unfinished beams stay unchanged and finished beams are \ replaced with a tensor with all probability on the EOS token. """ + check_type(probs, 'probs', (Variable), 'BeamSearchDecoder._mask_probs') + check_type(finished, 'finished', (Variable), + 'BeamSearchDecoder._mask_probs') # TODO: use where_op finished = tensor.cast(finished, dtype=probs.dtype) probs = nn.elementwise_mul( @@ -903,6 +908,10 @@ class BeamSearchDecoder(Decoder): Variable: A tensor with the same shape and data type as `x`, \ representing the gathered tensor. """ + check_type(x, 'x', (Variable), 'BeamSearchDecoder._gather') + check_type(indices, 'indices', (Variable), 'BeamSearchDecoder._gather') + check_type(batch_size, 'batch_size', (Variable), + 'BeamSearchDecoder._gather') # TODO: compatibility of int32 and int64 batch_size = tensor.cast( batch_size, @@ -2666,6 +2675,14 @@ def dynamic_gru(input, assert in_dygraph_mode( ) is not True, "please use gru instead of dynamic_gru in dygraph mode!" + check_variable_and_dtype(input, 'input', ['float32', 'float64'], + 'dynamic_gru') + + check_type(h_0, 'h_0', (Variable, type(None)), 'dynamic_gru') + if isinstance(h_0, Variable): + check_variable_and_dtype(h_0, 'h_0', ['float32', 'float64'], + 'dynamic_gru') + helper = LayerHelper('gru', **locals()) dtype = helper.input_dtype() diff --git a/python/paddle/fluid/tests/unittests/test_chunk_eval_op.py b/python/paddle/fluid/tests/unittests/test_chunk_eval_op.py index 2b7f92656db..2ebf6070c82 100644 --- a/python/paddle/fluid/tests/unittests/test_chunk_eval_op.py +++ b/python/paddle/fluid/tests/unittests/test_chunk_eval_op.py @@ -17,6 +17,9 @@ from __future__ import print_function import unittest import numpy as np from op_test import OpTest +import numpy as np +from paddle.fluid import Program, program_guard +from paddle import fluid class Segment(object): @@ -229,5 +232,45 @@ class TestChunkEvalOpWithTensorInput(TestChunkEvalOp): } +class TestChunkEvalOpError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + + def test_input(): + input_data = np.random.random(1, 1).astype("int64") + label_data = np.random.random(1).astype("int64") + fluid.layers.chunk_eval( + input=input_data, + label=label_data, + chunk_scheme="IOB", + num_chunk_types=3) + + self.assertRaises(TypeError, test_input) + + def test_label(): + input_ = fluid.data( + name="input", shape=[None, 1], dtype="int64") + label_data = np.random.random(1).astype("int64") + fluid.layers.chunk_eval( + input=input_, + label=label_data, + chunk_scheme="IOB", + num_chunk_types=3) + + self.assertRaises(TypeError, test_label) + + def test_type(): + in_data = fluid.data( + name="input_", shape=[None, 1], dtype="int32") + label = fluid.data(name="label_", shape=[1], dtype="int64") + fluid.layers.chunk_eval( + input=in_data, + label=label, + chunk_scheme="IOB", + num_chunk_types=3) + + self.assertRaises(TypeError, test_type) + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_gru_op.py b/python/paddle/fluid/tests/unittests/test_gru_op.py index b3a6d5cc7ce..3ea47a5d690 100644 --- a/python/paddle/fluid/tests/unittests/test_gru_op.py +++ b/python/paddle/fluid/tests/unittests/test_gru_op.py @@ -20,6 +20,8 @@ import math import functools from op_test import OpTest from test_lstm_op import ACTIVATION +from paddle import fluid +from paddle.fluid import Program, program_guard def gru( @@ -227,5 +229,24 @@ class TestGRUOpReverseOriginMode(TestGRUOp): self.origin_mode = True +class TestGruOpError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + + def test_Variable(): + input_data = np.random.random((1, 1536)).astype("float32") + fluid.layers.dynamic_gru(input=input_data, size=512) + + self.assertRaises(TypeError, test_Variable) + + def test_h_0(): + in_data = fluid.data( + name="input", shape=[None, 1536], dtype="float32") + h = fluid.data(name="h", shape=[None, 512], dtype="int32") + fluid.layers.dynamic_gru(input=in_data, size=512, h_0=h) + + self.assertRaises(TypeError, test_h_0) + + if __name__ == "__main__": unittest.main() -- GitLab