diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 11220e9763d568710cacb0f322b87c53dd3f4b28..2019710167d7d4c0002cc5e0a2e043c03b311634 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -14223,6 +14223,9 @@ def gather_tree(ids, parents): final_sequences = fluid.layers.gather_tree(ids, parents) """ helper = LayerHelper('gather_tree', **locals()) + check_variable_and_dtype(ids, 'ids', ['int32', 'int64'], 'gather_tree') + check_variable_and_dtype(parents, 'parents', ['int32', 'int64'], + 'gather_tree') out = helper.create_variable_for_type_inference(dtype=ids.dtype) helper.append_op( diff --git a/python/paddle/fluid/layers/rnn.py b/python/paddle/fluid/layers/rnn.py index 762e79e648b137e1589b9f398bbc062ced38b8da..c99578bb348ce12cd0f8fb390738dede4bc54c4f 100644 --- a/python/paddle/fluid/layers/rnn.py +++ b/python/paddle/fluid/layers/rnn.py @@ -29,6 +29,7 @@ from ..data_feeder import convert_dtype from ..layer_helper import LayerHelper from ..framework import in_dygraph_mode from ..param_attr import ParamAttr +from ..data_feeder import check_variable_and_dtype, check_type, check_dtype __all__ = [ 'RNNCell', @@ -89,7 +90,7 @@ class RNNCell(object): def get_initial_states(self, batch_ref, shape=None, - dtype=None, + dtype='float32', init_value=0, batch_dim_idx=0): """ @@ -106,9 +107,9 @@ class RNNCell(object): property `state_shape` will be used. The default value is None. dtype: A (possibly nested structure of) data type[s]. The structure must be same as that of `shape`, except when all tensors' in states - has the same data type, a single data type can be used. If None and + has the same data type, a single data type can be used. If property `cell.state_shape` is not available, float32 will be used - as the data type. The default value is None. + as the data type. The default value is float32. init_value: A float value used to initialize states. batch_dim_idx: An integer indicating which dimension of the tensor in inputs represents batch size. The default value is 0. @@ -117,6 +118,26 @@ class RNNCell(object): Variable: tensor variable[s] packed in the same structure provided \ by shape, representing the initialized states. """ + if sys.version_info < (3, ): + integer_types = ( + int, + long, ) + else: + integer_types = (int, ) + check_variable_and_dtype(batch_ref, 'batch_ref', + ['float32', 'float64'], 'RNNCell') + check_type(shape, 'shape', (list, tuple, type(None), integer_types), + 'RNNCell') + if isinstance(shape, (list, tuple)): + shapes = map_structure(lambda x: x, shape) + if isinstance(shape, list): + for i, _shape in enumerate(shapes): + check_type(_shape, 'shapes[' + str(i) + ']', integer_types, + 'RNNCell') + else: + check_type(shapes, 'shapes', integer_types, 'RNNCell') + check_dtype(dtype, 'dtype', ['float32', 'float64'], 'RNNCell') + # TODO: use inputs and batch_size batch_ref = flatten(batch_ref)[0] @@ -250,6 +271,8 @@ class GRUCell(RNNCell): dtype(string, optional): The data type used in this cell. Default float32. name(string, optional) : The name scope used to identify parameters and biases. """ + check_type(hidden_size, 'hidden_size', (int), 'GRUCell') + check_dtype(dtype, 'dtype', ['float32', 'float64'], 'GRUCell') self.hidden_size = hidden_size from .. import contrib # TODO: resolve recurrent import self.gru_unit = contrib.layers.rnn_impl.BasicGRUUnit( @@ -263,10 +286,10 @@ class GRUCell(RNNCell): Parameters: inputs(Variable): A tensor with shape `[batch_size, input_size]`, corresponding to :math:`x_t` in the formula. The data type - should be float32. + should be float32 or float64. states(Variable): A tensor with shape `[batch_size, hidden_size]`. corresponding to :math:`h_{t-1}` in the formula. The data type - should be float32. + should be float32 or float64. Returns: tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` and \ @@ -274,6 +297,11 @@ class GRUCell(RNNCell): corresponding to :math:`h_t` in the formula. The data type of the \ tensor is same as that of `states`. """ + + check_variable_and_dtype(inputs, 'inputs', ['float32', 'float64'], + 'GRUCell') + check_variable_and_dtype(states, 'states', ['float32', 'float64'], + 'GRUCell') new_hidden = self.gru_unit(inputs, states) return new_hidden, new_hidden @@ -343,6 +371,9 @@ class LSTMCell(RNNCell): dtype(string, optional): The data type used in this cell. Default float32. name(string, optional) : The name scope used to identify parameters and biases. """ + + check_type(hidden_size, 'hidden_size', (int), 'LSTMCell') + check_dtype(dtype, 'dtype', ['float32', 'float64'], 'LSTMCell') self.hidden_size = hidden_size from .. import contrib # TODO: resolve recurrent import self.lstm_unit = contrib.layers.rnn_impl.BasicLSTMUnit( @@ -356,10 +387,10 @@ class LSTMCell(RNNCell): Parameters: inputs(Variable): A tensor with shape `[batch_size, input_size]`, corresponding to :math:`x_t` in the formula. The data type - should be float32. + should be float32 or float64. states(Variable): A list of containing two tensors, each shaped `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}, c_{t-1}` - in the formula. The data type should be float32. + in the formula. The data type should be float32 or float64. Returns: tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` is \ @@ -369,6 +400,15 @@ class LSTMCell(RNNCell): to :math:`h_{t}, c_{t}` in the formula. The data type of these \ tensors all is same as that of `states`. """ + + check_variable_and_dtype(inputs, 'inputs', ['float32', 'float64'], + 'LSTMCell') + check_type(states, 'states', list, 'LSTMCell') + if isinstance(states, list): + for i, state in enumerate(states): + check_variable_and_dtype(state, 'state[' + str(i) + ']', + ['float32', 'float64'], 'LSTMCell') + pre_hidden, pre_cell = states new_hidden, new_cell = self.lstm_unit(inputs, pre_hidden, pre_cell) return new_hidden, [new_hidden, new_cell] @@ -444,6 +484,20 @@ def rnn(cell, cell = fluid.layers.GRUCell(hidden_size=128) outputs = fluid.layers.rnn(cell=cell, inputs=inputs) """ + check_type(inputs, 'inputs', (Variable, list, tuple), 'rnn') + if isinstance(inputs, (list, tuple)): + for i, input_x in enumerate(inputs): + check_variable_and_dtype(input_x, 'inputs[' + str(i) + ']', + ['float32', 'float64'], 'rnn') + check_type(initial_states, 'initial_states', + (Variable, list, tuple, type(None)), 'rnn') + if isinstance(initial_states, (list, tuple)): + states = map_structure(lambda x: x, initial_states)[0] + for i, state in enumerate(states): + check_variable_and_dtype(state, 'states[' + str(i) + ']', + ['float32', 'float64'], 'rnn') + check_type(sequence_length, 'sequence_length', (Variable, type(None)), + 'rnn') def _maybe_copy(state, new_state, step_mask): # TODO: use where_op @@ -775,7 +829,7 @@ class BeamSearchDecoder(Decoder): Parameters: probs(Variable): A tensor with shape `[batch_size, ...]`, representing - the log probabilities. Its data type should be float32. + the log probabilities. Its data type should be float32 or float64. finished(Variable): A tensor with shape `[batch_size, beam_size]`, representing the finished status for all beams. Its data type should be bool. @@ -797,7 +851,7 @@ class BeamSearchDecoder(Decoder): Parameters: probs(Variable): A tensor with shape `[batch_size, beam_size, vocab_size]`, - representing the log probabilities. Its data type should be float32. + representing the log probabilities. Its data type should be float32 or float64. finished(Variable): A tensor with shape `[batch_size, beam_size]`, representing the finished status for all beams. Its data type should be bool. @@ -2170,7 +2224,12 @@ def lstm(input, """ helper = LayerHelper('cudnn_lstm', **locals()) - + check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'lstm') + check_variable_and_dtype(init_h, 'init_h', ['float32', 'float64'], 'lstm') + check_variable_and_dtype(init_c, 'init_c', ['float32', 'float64'], 'lstm') + check_type(max_len, 'max_len', (int), 'lstm') + check_type(hidden_size, 'hidden_size', (int), 'lstm') + check_type(num_layers, 'num_layers', (int), 'lstm') dtype = input.dtype input_shape = list(input.shape) input_size = input_shape[-1] @@ -2695,6 +2754,10 @@ def gru_unit(input, input=x, hidden=pre_hidden, size=hidden_dim * 3) """ + check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'gru_unit') + check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'], + 'gru_unit') + check_type(size, 'size', (int), 'gru_unit') activation_dict = dict( identity=0, sigmoid=1, @@ -2784,7 +2847,7 @@ def beam_search(pre_ids, pre_scores(Variable): A LodTensor variable has the same shape and lod with ``pre_ids`` , representing the accumulated scores corresponding to the selected ids of previous step. It is the output of - beam_search at previous step. The data type should be float32. + beam_search at previous step. The data type should be float32 or float64. ids(Variable|None): A LodTensor variable containing the candidates ids. It has the same lod with ``pre_ids`` and its shape should be `[batch_size * beam_size, K]`, where `K` supposed to be greater than @@ -2794,7 +2857,7 @@ def beam_search(pre_ids, ids. scores(Variable): A LodTensor variable containing the accumulated scores corresponding to ``ids`` . Both its shape and lod are same as - those of ``ids`` . The data type should be float32. + those of ``ids`` . The data type should be float32 or float64. beam_size(int): The beam width used in beam search. end_id(int): The id of end token. level(int): **It can be ignored and mustn't change currently.** @@ -3050,7 +3113,11 @@ def lstm_unit(x_t, cell_t_prev=pre_cell) """ helper = LayerHelper('lstm_unit', **locals()) - + check_variable_and_dtype(x_t, 'x_t', ['float32', 'float64'], 'lstm_unit') + check_variable_and_dtype(hidden_t_prev, 'hidden_t_prev', + ['float32', 'float64'], 'lstm_unit') + check_variable_and_dtype(cell_t_prev, 'cell_t_prev', + ['float32', 'float64'], 'lstm_unit') if len(x_t.shape) != 2: raise ValueError("Rank of x_t must be 2.") diff --git a/python/paddle/fluid/tests/unittests/test_gather_tree_op.py b/python/paddle/fluid/tests/unittests/test_gather_tree_op.py index f9ecc97482c3b6ea3a0d8892594c7b39c0e046e8..f23d2c68c66b9daa16dd6bdd6db52cf6585724b3 100644 --- a/python/paddle/fluid/tests/unittests/test_gather_tree_op.py +++ b/python/paddle/fluid/tests/unittests/test_gather_tree_op.py @@ -18,6 +18,7 @@ import unittest import numpy as np from op_test import OpTest import paddle.fluid as fluid +from paddle.fluid.framework import program_guard, Program class TestGatherTreeOp(OpTest): @@ -61,5 +62,56 @@ class TestGatherTreeOpAPI(unittest.TestCase): final_sequences = fluid.layers.gather_tree(ids, parents) +class TestGatherTreeOpError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + ids = fluid.layers.data( + name='ids', + shape=[5, 2, 2], + dtype='int64', + append_batch_size=False) + parents = fluid.layers.data( + name='parents', + shape=[5, 2, 2], + dtype='int64', + append_batch_size=False) + + def test_Variable_ids(): + # the input type must be Variable + np_ids = np.random.random((5, 2, 2), dtype='int64') + fluid.layers.gather_tree(np_ids, parents) + + self.assertRaises(TypeError, test_Variable_ids) + + def test_Variable_parents(): + # the input type must be Variable + np_parents = np.random.random((5, 2, 2), dtype='int64') + fluid.layers.gather_tree(ids, np_parents) + + self.assertRaises(TypeError, test_Variable_parents) + + def test_type_ids(): + # dtype must be int32 or int64 + bad_ids = fluid.layers.data( + name='bad_ids', + shape=[5, 2, 2], + dtype='float32', + append_batch_size=False) + fluid.layers.gather_tree(bad_ids, parents) + + self.assertRaises(TypeError, test_type_ids) + + def test_type_parents(): + # dtype must be int32 or int64 + bad_parents = fluid.layers.data( + name='bad_parents', + shape=[5, 2, 2], + dtype='float32', + append_batch_size=False) + fluid.layers.gather_tree(ids, bad_parents) + + self.assertRaises(TypeError, test_type_parents) + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_gru_unit_op.py b/python/paddle/fluid/tests/unittests/test_gru_unit_op.py index 4143619d981f1ff167c4a3b2825ab497ce6dec86..a570e266072adc167f973cd4b22eda3ecb5e5abb 100644 --- a/python/paddle/fluid/tests/unittests/test_gru_unit_op.py +++ b/python/paddle/fluid/tests/unittests/test_gru_unit_op.py @@ -19,6 +19,9 @@ import unittest import numpy as np import paddle.fluid as fluid from op_test import OpTest +from paddle import fluid +from paddle.fluid.layers import gru_unit +from paddle.fluid.framework import program_guard, Program class TestGRUUnitAPIError(unittest.TestCase): @@ -59,6 +62,49 @@ def relu(x): return np.maximum(x, 0) +class TestGRUUnitOpError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + batch_size = 5 + hidden_dim = 40 + input = fluid.data( + name='input', shape=[None, hidden_dim * 3], dtype='float32') + pre_hidden = fluid.data( + name='pre_hidden', shape=[None, hidden_dim], dtype='float32') + np_input = np.random.uniform( + -0.1, 0.1, (batch_size, hidden_dim * 3)).astype('float64') + np_pre_hidden = np.random.uniform( + -0.1, 0.1, (batch_size, hidden_dim)).astype('float64') + + def test_input_Variable(): + gru_unit(np_input, pre_hidden, hidden_dim * 3) + + self.assertRaises(TypeError, test_input_Variable) + + def test_pre_hidden_Variable(): + gru_unit(input, np_pre_hidden, hidden_dim * 3) + + self.assertRaises(TypeError, test_pre_hidden_Variable) + + def test_input_type(): + error_input = fluid.data( + name='error_input', + shape=[None, hidden_dim * 3], + dtype='int32') + gru_unit(error_input, pre_hidden, hidden_dim * 3) + + self.assertRaises(TypeError, test_input_type) + + def test_pre_hidden_type(): + error_pre_hidden = fluid.data( + name='error_pre_hidden', + shape=[None, hidden_dim], + dtype='int32') + gru_unit(input, error_pre_hidden, hidden_dim * 3) + + self.assertRaises(TypeError, test_pre_hidden_type) + + class TestGRUUnitOp(OpTest): batch_size = 5 frame_size = 40 diff --git a/python/paddle/fluid/tests/unittests/test_lstm_op.py b/python/paddle/fluid/tests/unittests/test_lstm_op.py index 2b3d9be8200bdde4d5118ba5b7e45b49d02419a0..20ceaa1f2ee45c630e28283d4c6d2369f256ea48 100644 --- a/python/paddle/fluid/tests/unittests/test_lstm_op.py +++ b/python/paddle/fluid/tests/unittests/test_lstm_op.py @@ -17,6 +17,9 @@ from __future__ import print_function import unittest import numpy as np from op_test import OpTest +from paddle import fluid +from paddle.fluid.layers import lstm, fill_constant +from paddle.fluid.framework import program_guard, Program SIGMOID_THRESHOLD_MIN = -40.0 SIGMOID_THRESHOLD_MAX = 13.0 @@ -126,6 +129,87 @@ def lstm( return hidden, cell +class LstmUnitTestError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + batch_size = 20 + seq_len = 100 + dropout_prob = 0.2 + hidden_size = 150 + num_layers = 1 + input = fluid.data( + name='input', + shape=[batch_size, seq_len, hidden_size], + dtype='float32') + pre_hidden = fill_constant([num_layers, batch_size, hidden_size], + 'float32', 0.0) + pre_cell = fill_constant([num_layers, batch_size, hidden_size], + 'float32', 0.0) + + np_input = np.random.uniform( + -0.1, 0.1, (batch_size, seq_len, hidden_size)).astype('float64') + np_pre_hidden = np.random.uniform( + -0.1, 0.1, + (num_layers, batch_size, hidden_size)).astype('float64') + np_pre_cell = np.random.uniform( + -0.1, 0.1, + (num_layers, batch_size, hidden_size)).astype('float64') + + def test_input_Variable(): + lstm(np_input, pre_hidden, pre_cell, \ + seq_len, hidden_size, num_layers, \ + dropout_prob=dropout_prob) + + self.assertRaises(TypeError, test_input_Variable) + + def test_pre_hidden_Variable(): + lstm(np_input, np_pre_hidden, pre_cell, \ + seq_len, hidden_size, num_layers, \ + dropout_prob=dropout_prob) + + self.assertRaises(TypeError, test_pre_hidden_Variable) + + def test_pre_cell_Variable(): + lstm(np_input, pre_hidden, np_pre_cell, \ + seq_len, hidden_size, num_layers, \ + dropout_prob=dropout_prob) + + self.assertRaises(TypeError, test_pre_cell_Variable) + + def test_input_type(): + error_input = fluid.data( + name='error_input', + shape=[None, hidden_size * 3], + dtype='int32') + lstm(error_input, pre_hidden, pre_cell, \ + seq_len, hidden_size, num_layers, \ + dropout_prob=dropout_prob) + + self.assertRaises(TypeError, test_input_type) + + def test_pre_hidden_type(): + error_pre_hidden = fluid.data( + name='error_pre_hidden', + shape=[None, hidden_size], + dtype='int32') + lstm(input, error_pre_hidden, pre_cell, \ + seq_len, hidden_size, num_layers, \ + dropout_prob=dropout_prob) + + self.assertRaises(TypeError, test_pre_hidden_type) + + def test_pre_cell_type(): + error_pre_cell = fluid.data( + name='error_pre_cell', + shape=[None, hidden_size], + dtype='int32') + lstm(input, pre_hidden, error_pre_cell, \ + seq_len, hidden_size, num_layers, \ + dropout_prob=dropout_prob) + + self.assertRaises(TypeError, test_pre_cell_type) + + class TestLstmOp(OpTest): def set_lod(self): self.lod = [[2, 3, 2]] diff --git a/python/paddle/fluid/tests/unittests/test_lstm_unit_op.py b/python/paddle/fluid/tests/unittests/test_lstm_unit_op.py index eaa6b774c4d3e7add555c34f887e86dc847583b2..c0875462e33f3fe6b493d5b3f66c9f955ae5a0c5 100644 --- a/python/paddle/fluid/tests/unittests/test_lstm_unit_op.py +++ b/python/paddle/fluid/tests/unittests/test_lstm_unit_op.py @@ -17,6 +17,9 @@ from __future__ import print_function import unittest import numpy as np from op_test import OpTest +from paddle import fluid +from paddle.fluid.layers import lstm_unit +from paddle.fluid.framework import program_guard, Program def sigmoid_np(x): @@ -27,11 +30,77 @@ def tanh_np(x): return 2 * sigmoid_np(2. * x) - 1. +class LstmUnitTestError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + batch_size, dict_dim, emb_dim, hidden_dim = 32, 128, 64, 512 + data = fluid.data( + name='step_data', shape=[batch_size], dtype='int64') + inputs = fluid.embedding(input=data, size=[dict_dim, emb_dim]) + pre_hidden = fluid.data( + name='pre_hidden', + shape=[batch_size, hidden_dim], + dtype='float32') + pre_cell = fluid.data( + name='pre_cell', + shape=[batch_size, hidden_dim], + dtype='float32') + + np_input = np.random.uniform( + -0.1, 0.1, (batch_size, emb_dim)).astype('float64') + np_pre_hidden = np.random.uniform( + -0.1, 0.1, (batch_size, hidden_dim)).astype('float64') + np_pre_cell = np.random.uniform( + -0.1, 0.1, (batch_size, hidden_dim)).astype('float64') + + def test_input_Variable(): + lstm_unit(np_input, pre_hidden, pre_cell) + + self.assertRaises(TypeError, test_input_Variable) + + def test_pre_hidden_Variable(): + lstm_unit(inputs, np_pre_hidden, pre_cell) + + self.assertRaises(TypeError, test_pre_hidden_Variable) + + def test_pre_cell_Variable(): + lstm_unit(inputs, pre_hidden, np_pre_cell) + + self.assertRaises(TypeError, test_pre_cell_Variable) + + def test_input_type(): + error_input = fluid.data( + name='error_input', + shape=[batch_size, emb_dim], + dtype='int32') + lstm_unit(error_input, pre_hidden, pre_cell) + + self.assertRaises(TypeError, test_input_type) + + def test_pre_hidden_type(): + error_pre_hidden = fluid.data( + name='error_pre_hidden', + shape=[batch_size, hidden_dim], + dtype='int32') + lstm_unit(inputs, error_pre_hidden, pre_cell) + + self.assertRaises(TypeError, test_pre_hidden_type) + + def test_pre_cell_type(): + error_pre_cell = fluid.data( + name='error_pre_cell', + shape=[batch_size, hidden_dim], + dtype='int32') + lstm_unit(inputs, pre_hidden, error_pre_cell) + + self.assertRaises(TypeError, test_pre_cell_type) + + class LstmUnitTest(OpTest): def setUp(self): self.op_type = "lstm_unit" - x_np = np.random.normal(size=(5, 16)).astype("float64") - c_np = np.random.normal(size=(5, 4)).astype("float64") + x_np = np.random.normal(size=(15, 160)).astype("float64") + c_np = np.random.normal(size=(15, 40)).astype("float64") i_np, f_np, o_np, j_np = np.split(x_np, 4, axis=1) forget_bias_np = 0. self.attrs = {'forget_bias': 0.} diff --git a/python/paddle/fluid/tests/unittests/test_rnn_cell_api.py b/python/paddle/fluid/tests/unittests/test_rnn_cell_api.py index 7b9e23881f039e04b8dfa91c2ac1bd50e7678fbd..721bb92d11d68d69bd7bd977b92eef5870e9e7c6 100644 --- a/python/paddle/fluid/tests/unittests/test_rnn_cell_api.py +++ b/python/paddle/fluid/tests/unittests/test_rnn_cell_api.py @@ -20,6 +20,7 @@ import numpy import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core +from paddle.fluid.framework import program_guard, Program from paddle.fluid.executor import Executor from paddle.fluid import framework @@ -33,6 +34,73 @@ import paddle.fluid.layers.utils as utils import numpy as np +class TestLSTMCellError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + batch_size, input_size, hidden_size = 4, 16, 16 + inputs = fluid.data( + name='inputs', shape=[None, input_size], dtype='float32') + pre_hidden = fluid.data( + name='pre_hidden', shape=[None, hidden_size], dtype='float32') + pre_cell = fluid.data( + name='pre_cell', shape=[None, hidden_size], dtype='float32') + cell = LSTMCell(hidden_size) + + def test_input_Variable(): + np_input = np.random.random( + (batch_size, input_size)).astype("float32") + cell(np_input, [pre_hidden, pre_cell]) + + self.assertRaises(TypeError, test_input_Variable) + + def test_pre_hidden_Variable(): + np_pre_hidden = np.random.random( + (batch_size, hidden_size)).astype("float32") + cell(inputs, [np_pre_hidden, pre_cell]) + + self.assertRaises(TypeError, test_pre_hidden_Variable) + + def test_pre_cell_Variable(): + np_pre_cell = np.random.random( + (batch_size, input_size)).astype("float32") + cell(inputs, [pre_hidden, np_pre_cell]) + + self.assertRaises(TypeError, test_pre_cell_Variable) + + def test_input_type(): + error_inputs = fluid.data( + name='error_inputs', + shape=[None, input_size], + dtype='int32') + cell(error_inputs, [pre_hidden, pre_cell]) + + self.assertRaises(TypeError, test_input_type) + + def test_pre_hidden_type(): + error_pre_hidden = fluid.data( + name='error_pre_hidden', + shape=[None, hidden_size], + dtype='int32') + cell(inputs, [error_pre_hidden, pre_cell]) + + self.assertRaises(TypeError, test_pre_hidden_type) + + def test_pre_cell_type(): + error_pre_cell = fluid.data( + name='error_pre_cell', + shape=[None, hidden_size], + dtype='int32') + cell(inputs, [pre_hidden, error_pre_cell]) + + self.assertRaises(TypeError, test_pre_cell_type) + + def test_dtype(): + # the input type must be Variable + LSTMCell(hidden_size, dtype="int32") + + self.assertRaises(TypeError, test_dtype) + + class TestLSTMCell(unittest.TestCase): def setUp(self): self.batch_size = 4 @@ -93,6 +161,58 @@ class TestLSTMCell(unittest.TestCase): self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4, atol=0)) +class TestGRUCellError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + batch_size, input_size, hidden_size = 4, 16, 16 + inputs = fluid.data( + name='inputs', shape=[None, input_size], dtype='float32') + pre_hidden = layers.data( + name='pre_hidden', + shape=[None, hidden_size], + append_batch_size=False, + dtype='float32') + cell = GRUCell(hidden_size) + + def test_input_Variable(): + np_input = np.random.random( + (batch_size, input_size)).astype("float32") + cell(np_input, pre_hidden) + + self.assertRaises(TypeError, test_input_Variable) + + def test_pre_hidden_Variable(): + np_pre_hidden = np.random.random( + (batch_size, hidden_size)).astype("float32") + cell(inputs, np_pre_hidden) + + self.assertRaises(TypeError, test_pre_hidden_Variable) + + def test_input_type(): + error_inputs = fluid.data( + name='error_inputs', + shape=[None, input_size], + dtype='int32') + cell(error_inputs, pre_hidden) + + self.assertRaises(TypeError, test_input_type) + + def test_pre_hidden_type(): + error_pre_hidden = fluid.data( + name='error_pre_hidden', + shape=[None, hidden_size], + dtype='int32') + cell(inputs, error_pre_hidden) + + self.assertRaises(TypeError, test_pre_hidden_type) + + def test_dtype(): + # the input type must be Variable + GRUCell(hidden_size, dtype="int32") + + self.assertRaises(TypeError, test_dtype) + + class TestGRUCell(unittest.TestCase): def setUp(self): self.batch_size = 4 @@ -151,6 +271,92 @@ class TestGRUCell(unittest.TestCase): self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4, atol=0)) +class TestRnnError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + batch_size = 4 + input_size = 16 + hidden_size = 16 + seq_len = 4 + inputs = fluid.data( + name='inputs', shape=[None, input_size], dtype='float32') + pre_hidden = layers.data( + name='pre_hidden', + shape=[None, hidden_size], + append_batch_size=False, + dtype='float32') + inputs_basic_lstm = fluid.data( + name='inputs_basic_lstm', + shape=[None, None, input_size], + dtype='float32') + sequence_length = fluid.data( + name="sequence_length", shape=[None], dtype='int64') + + inputs_dynamic_rnn = layers.transpose( + inputs_basic_lstm, perm=[1, 0, 2]) + cell = LSTMCell(hidden_size, name="LSTMCell_for_rnn") + np_inputs_dynamic_rnn = np.random.random( + (seq_len, batch_size, input_size)).astype("float32") + + def test_input_Variable(): + dynamic_rnn( + cell=cell, + inputs=np_inputs_dynamic_rnn, + sequence_length=sequence_length, + is_reverse=False) + + self.assertRaises(TypeError, test_input_Variable) + + def test_input_list(): + dynamic_rnn( + cell=cell, + inputs=[np_inputs_dynamic_rnn], + sequence_length=sequence_length, + is_reverse=False) + + self.assertRaises(TypeError, test_input_list) + + def test_initial_states_type(): + cell = GRUCell(hidden_size, name="GRUCell_for_rnn") + error_initial_states = np.random.random( + (batch_size, hidden_size)).astype("float32") + dynamic_rnn( + cell=cell, + inputs=inputs_dynamic_rnn, + initial_states=error_initial_states, + sequence_length=sequence_length, + is_reverse=False) + + self.assertRaises(TypeError, test_initial_states_type) + + def test_initial_states_list(): + error_initial_states = [ + np.random.random( + (batch_size, hidden_size)).astype("float32"), + np.random.random( + (batch_size, hidden_size)).astype("float32") + ] + dynamic_rnn( + cell=cell, + inputs=inputs_dynamic_rnn, + initial_states=error_initial_states, + sequence_length=sequence_length, + is_reverse=False) + + self.assertRaises(TypeError, test_initial_states_type) + + def test_sequence_length_type(): + np_sequence_length = np.random.random( + (batch_size)).astype("float32") + dynamic_rnn( + cell=cell, + inputs=inputs_dynamic_rnn, + sequence_length=np_sequence_length, + is_reverse=False) + + self.assertRaises(TypeError, test_sequence_length_type) + + class TestRnn(unittest.TestCase): def setUp(self): self.batch_size = 4