提交 ffbf00a0 编写于 作者: L Luo Tao

Merge branch 'develop' into group

......@@ -13,8 +13,6 @@
# The document of clang-format is
# http://clang.llvm.org/docs/ClangFormat.html
# http://clang.llvm.org/docs/ClangFormatStyleOptions.html
#
# TODO(yuyang18): Add python and other language code style
---
Language: Cpp
BasedOnStyle: Google
......@@ -22,8 +20,9 @@ IndentWidth: 2
TabWidth: 2
ContinuationIndentWidth: 4
AccessModifierOffset: -2 # The private/protected/public has no indent in class
PointerAlignment: Left # int* p/int& p, not int *p/int &p
Standard: Cpp11
AllowAllParametersOfDeclarationOnNextLine: true
BinPackParameters: false
BinPackArguments: false
...
- repo: https://github.com/Lucas-C/pre-commit-hooks.git
sha: c25201a00e6b0514370501050cf2a8538ac12270
hooks:
- id: remove-crlf
- repo: https://github.com/reyoung/mirrors-yapf.git
sha: v0.13.2
hooks:
- id: yapf
- repo: https://github.com/pre-commit/pre-commit-hooks
sha: 4ef03c4223ad322c7adaa6c6c0efb26b57df3b71
hooks:
- id: check-added-large-files
- id: check-merge-conflict
- id: check-symlinks
- id: detect-private-key
- id: end-of-file-fixer
# TODO(yuyang): trailing whitespace has some bugs on markdown
# files now, please not add it to pre-commit hook now
# - id: trailing-whitespace
#
# TODO(yuyang): debug-statements not fit for Paddle, because
# not all of our python code is runnable. Some are used for
# documenation
# - id: debug-statements
This folder contains scripts used in PaddlePaddle introduction.
- use `bash train.sh` to train a simple linear regression model
- use `python evaluate_model.py` to read model parameters. You can see that `w` and `b` are very close to [2, 0.3].
......@@ -19,4 +19,3 @@ done
cd $DIR
rm -f *.list
python generate_list.py
......@@ -14,4 +14,3 @@
"fields": ["id", "title", "genres"]
}
}
......@@ -37,4 +37,3 @@ paddle train \
--use_gpu=false \
--config_args=is_test=1 \
2>&1 | tee 'test.log'
......@@ -24,4 +24,3 @@ paddle train \
--show_parameter_stats_period=10 \
--test_all_data_in_one_period=1 \
2>&1 | tee 'train.log'
......@@ -8,7 +8,7 @@ User Guide
* [Build and Installation](build/index.rst)
* [Contribute Code](build/contribute_to_paddle.md)
* [User Interface](ui/index.md)
* [Model Config Interface](ui/api/trainer_config_helpers/index.md)
* [Model Config Interface](ui/api/trainer_config_helpers/index.rst)
* [Example and Demo](demo/index.md)
* [Cluster Train](cluster/index.md)
......
......@@ -98,4 +98,3 @@ There, you have recovered the underlying pattern between `X` and `Y` only from o
- <a href="../build/index.html"> Build and Installation </a>
- <a href="../demo/quick_start/index_en.html">Quick Start</a>
- <a href="../demo/index.html">Example and Demo</a>
===========
Activations
===========
BaseActivation
==============
......@@ -102,4 +106,3 @@ STanhActivation
.. automodule:: paddle.trainer_config_helpers.activations
:members: STanhActivation
:noindex:
Activations
===========
.. toctree::
:maxdepth: 3
activations.rst
==========
Evaluators
==========
Base
====
.. automodule:: paddle.trainer_config_helpers.evaluators
......
Evaluators
==========
.. toctree::
:maxdepth: 3
evaluators.rst
# Model Config Interface
* [Optimizer](optimizers_index.rst)
* [Data Source](data_sources.rst)
* [Layers](layers_index.rst)
* [Activations](activations_index.rst)
* [Poolings](poolings_index.rst)
* [Networks](networks_index.rst)
* [Evaluators](evaluators_index.rst)
* [Parameter and Extra Layer Attribute](attrs.rst)
Model Config Interface
======================
.. toctree::
:maxdepth: 1
optimizers.rst
data_sources.rst
layers.rst
activations.rst
poolings.rst
networks.rst
evaluators.rst
attrs.rst
======
Layers
======
Base
======
......@@ -47,7 +51,7 @@ conv_operator
:noindex:
conv_projection
-------------
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: conv_projection
:noindex:
......@@ -187,6 +191,12 @@ embedding_layer
:members: embedding_layer
:noindex:
scaling_projection
-----------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: scaling_projection
:noindex:
dotmul_projection
-----------------
.. automodule:: paddle.trainer_config_helpers.layers
......
Layers
======
.. toctree::
:maxdepth: 3
layers.rst
========
Networks
========
The networks module contains pieces of neural network that combine multiple layers.
NLP
===
......@@ -111,4 +117,3 @@ outputs
.. automodule:: paddle.trainer_config_helpers.networks
:members: outputs
:noindex:
Networks
========
The networks module contains pieces of neural network that combine multiple layers.
.. toctree::
:maxdepth: 3
networks.rst
==========
Optimizers
==========
BaseSGDOptimizer
================
.. automodule:: paddle.trainer_config_helpers.optimizers
......@@ -51,4 +55,3 @@ settings
.. automodule:: paddle.trainer_config_helpers.optimizers
:members: settings
:noindex:
Optimizers
==========
.. toctree::
:maxdepth: 3
optimizers.rst
========
Poolings
========
BasePoolingType
===============
.. automodule:: paddle.trainer_config_helpers.poolings
......@@ -27,4 +31,3 @@ SquareRootNPooling
.. automodule:: paddle.trainer_config_helpers.poolings
:members: SquareRootNPooling
:noindex:
Poolings
========
These pooling types are used for sequence input, not for images.
.. toctree::
:maxdepth: 3
poolings.rst
......@@ -4,7 +4,7 @@ PaddlePaddle 基本使用概念
PaddlePaddle是一个神经网络学习框架。其单机进程为 :code:`paddle train`。 单机的所有设备使用,均在单机进程内调度完成。 而多机辅助进程 :code:`paddle pserver` 负责联合多个单机进程进行通信,进而充分利用集群的计算资源。 PaddlePaddle同时以 :code:`swig api` 的形式,提供训练结果模型预测的方法和自定义训练流程。
下面我们会分别介绍主要进程 :code:`paddle train` 中的一些概念。这些概念会对如何使用PaddlePaddle有一定的帮助。 了解这些概念的前提是,读者已经了解 `基本的神经网络/机器学习原理和概念 <nn.rst>`_ 。同时,如果想要了解PaddlePaddle实现中的一些概念,请参考 `PaddlePaddle 编程中的基本概念 <program_concepts.rst>`_ 。
下面我们会分别介绍主要进程 :code:`paddle train` 中的一些概念。这些概念会对如何使用PaddlePaddle有一定的帮助。 了解这些概念的前提是,读者已经了解 `基本的神经网络/机器学习原理和概念 <nn.html>`_ 。同时,如果想要了解PaddlePaddle实现中的一些概念,请参考 `PaddlePaddle 编程中的基本概念 <program_concepts.html>`_ 。
.. contents::
......@@ -184,8 +184,8 @@ PaddlePaddle多机使用的经典方法是通过 :code:`Parameter Server` 来对
详细的说明可以参考,使用 `集群训练Paddle`_ 。
.. _PyDataProvider: ../ui/data_provider/pydataprovider2.rst
.. _settings: ../../doc/ui/api/trainer_config_helpers/optimizers.rst
.. _mixed_layer: ../../doc/ui/api/trainer_config_helpers/layers.rst
.. _PyDataProvider: ../ui/data_provider/pydataprovider2.html
.. _settings: ../../doc/ui/api/trainer_config_helpers/optimizers.html#settings
.. _mixed_layer: ../../doc/ui/api/trainer_config_helpers/layers.html#mixed-layer
.. _masking-gpu: http://www.acceleware.com/blog/cudavisibledevices-masking-gpus
.. _集群训练Paddle: ../cluster/index.rst
.. _集群训练Paddle: ../cluster/index.html
......@@ -17,5 +17,3 @@ endif()
if(WITH_SWIG_PY)
add_subdirectory(api)
endif()
......@@ -65,4 +65,3 @@ struct ArgumentsPrivate {
return *(std::shared_ptr<T>*)(rawPtr);
}
};
......@@ -69,8 +69,8 @@ class TestMatrix(unittest.TestCase):
def test_numpy(self):
numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype="float32")
m = swig_paddle.Matrix.createCpuDenseFromNumpy(numpy_mat)
self.assertEqual(
(int(m.getHeight()), int(m.getWidth())), numpy_mat.shape)
self.assertEqual((int(m.getHeight()), int(m.getWidth())),
numpy_mat.shape)
# the numpy matrix and paddle matrix shared the same memory.
numpy_mat[0, 1] = 342.23
......
......@@ -254,4 +254,3 @@ extern __thread cudaStream_t default_stream;
#endif /* __NVCC__ */
#endif /* HL_BASE_H_ */
......@@ -199,4 +199,3 @@ inline void hl_batch_norm_backward(hl_tensor_descriptor inputDesc,
real *savedInvVar) {}
#endif // HL_CUDA_CUDNN_STUB_H_
......@@ -718,4 +718,3 @@ void sincos256_ps(v8sf x, v8sf *s, v8sf *c) {
*s = _mm256_xor_ps(xmm1, sign_bit_sin);
*c = _mm256_xor_ps(xmm2, sign_bit_cos);
}
......@@ -605,7 +605,7 @@ public:
int batchSize = input->getHeight();
int size = 1;
resizeOutput(batchSize, size);
output_.value->sumRows(*input);
output_.value->sumRows(*input, /* scaleSum= */1, /* scaleDest= */0);
}
virtual void backward(const UpdateCallback& callback = nullptr) {
......
......@@ -52,7 +52,9 @@ void FullMatrixProjection::backward(const UpdateCallback& callback) {
}
hl_set_sync_flag(syncFlag);
if (weight_->getWGrad()) {
parameter_->incUpdate(callback);
}
}
} // namespace paddle
......@@ -48,4 +48,3 @@ public:
};
} // namespace paddle
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Projection.h"
namespace paddle {
class ScalingProjection : public Projection {
public:
ScalingProjection(const ProjectionConfig& config,
const ParameterPtr& parameter, bool useGpu)
: Projection(config, parameter, useGpu) {
CHECK_EQ(parameter->getSize(), 1UL);
weight_.reset(new Weight(1, 1, parameter));
}
void forward() {
CHECK(in_->value);
out_->value->add(*in_->value, weight_->getW()->getElement(0, 0));
}
void backward(const UpdateCallback& callback) {
if (weight_->getWGrad()) {
auto sum = Matrix::create(in_->value->getHeight(), 1, false, useGpu_);
sum->sumOfProducts(*in_->value, *out_->grad,
/* scaleSum= */1, /* scaleDest= */0);
weight_->getWGrad()->sumCols(*sum,
/* scaleSum= */1, /* scaleDest= */1);
parameter_->incUpdate(callback);
}
if (in_->grad) {
in_->grad->add(*out_->grad, weight_->getW()->getElement(0, 0));
}
}
protected:
std::unique_ptr<Weight> weight_;
};
REGISTER_PROJECTION(scaling, ScalingProjection);
} // namespace paddle
......@@ -135,6 +135,17 @@ TEST(Projection, identity) {
}
}
TEST(Projection, scaling) {
ProjectionConfig conf;
conf.set_type("scaling");
conf.set_input_size(10);
conf.set_output_size(10);
for (auto useGpu : {false}) {
testProjectionGrad(conf, INPUT_DATA, /* parameterSize */ 1,
/* batchSize */ 100, useGpu);
}
}
#ifndef PADDLE_ONLY_CPU
TEST(Projection, conv) {
const int NUM_FILTERS = 16;
......
......@@ -1451,6 +1451,8 @@ int BaseMatrixT<real>::applyRow(Agg agg, BaseMatrixT& b) {
MatrixOffset offset(0, 0, 0, 0, 0, 0);
int numRows = b.height_;
int numCols = b.width_;
CHECK_EQ(height_, numRows);
CHECK_EQ(width_, 1UL);
aggregate(agg, base::unary::identity(), base::binary::second(), b, numRows,
numCols, offset, false_type(), true_type() /*aAsColVector*/);
......@@ -1463,18 +1465,69 @@ int BaseMatrixT<real>::applyRow(Agg agg, Saver sv, BaseMatrixT& b) {
MatrixOffset offset(0, 0, 0, 0, 0, 0);
int numRows = b.height_;
int numCols = b.width_;
CHECK_EQ(height_, numRows);
CHECK_EQ(width_, 1UL);
aggregate(agg, base::unary::identity(), sv, b, numRows, numCols, offset,
false_type(), true_type() /*aAsColVector*/);
return 0;
}
template<>
template <class Agg>
int BaseMatrixT<real>::applyRow(
Agg agg, real scaleDest, real scaleAgg, BaseMatrixT& b) {
if (scaleDest != 0) {
applyRow(agg, base::binary::add2(scaleDest, scaleAgg), b);
} else {
applyRow(agg, base::binary::second(), b);
if (scaleAgg != 1) {
mulScalar(scaleAgg);
}
}
return 0;
}
template<>
template <class Agg, class Op, class Saver>
int BaseMatrixT<real>::applyRow(Agg agg, Op op, Saver sv,
BaseMatrixT& b, BaseMatrixT& c) {
MatrixOffset offset(0, 0, 0, 0, 0, 0);
int numRows = b.height_;
int numCols = b.width_;
CHECK_EQ(height_, numRows);
CHECK_EQ(width_, 1UL);
CHECK_EQ(c.height_, numRows);
CHECK_EQ(c.width_, numCols);
aggregate(agg, op, sv,
b, c, numRows, numCols, offset,
false_type(), true_type() /*aAsColVector*/);
return 0;
}
template<>
template <class Agg, class Op>
int BaseMatrixT<real>::applyRow(Agg agg, Op op, real scaleDest, real scaleAgg,
BaseMatrixT& b, BaseMatrixT& c) {
if (scaleDest != 0) {
applyRow(agg, op, base::binary::add2(scaleDest, scaleAgg), b, c);
} else {
applyRow(agg, op, base::binary::second(), b, c);
if (scaleAgg != 1) {
mulScalar(scaleAgg);
}
}
return 0;
}
template<>
template <class Agg>
int BaseMatrixT<real>::applyCol(Agg agg, BaseMatrixT& b) {
MatrixOffset offset(0, 0, 0, 0, 0, 0);
int numRows = b.height_;
int numCols = b.width_;
CHECK_EQ(width_, numCols);
CHECK_EQ(height_, 1UL);
aggregate(agg, base::unary::identity(), base::binary::second(), b, numRows,
numCols, offset, true_type() /*aAsRowVector*/, false_type());
......@@ -1487,6 +1540,8 @@ int BaseMatrixT<real>::applyCol(Agg agg, Saver sv, BaseMatrixT& b) {
MatrixOffset offset(0, 0, 0, 0, 0, 0);
int numRows = b.height_;
int numCols = b.width_;
CHECK_EQ(width_, numCols);
CHECK_EQ(height_, 1UL);
aggregate(agg, base::unary::identity(), sv, b, numRows, numCols, offset,
true_type() /*aAsRowVector*/, false_type());
......@@ -1494,8 +1549,23 @@ int BaseMatrixT<real>::applyCol(Agg agg, Saver sv, BaseMatrixT& b) {
}
template<>
void BaseMatrixT<real>::sumRows(BaseMatrixT& b) {
applyRow(aggregate::sum(), b);
template <class Agg>
int BaseMatrixT<real>::applyCol(
Agg agg, real scaleDest, real scaleAgg, BaseMatrixT& b) {
if (scaleDest != 0) {
applyCol(agg, base::binary::add2(scaleDest, scaleAgg), b);
} else {
applyCol(agg, base::binary::second(), b);
if (scaleAgg != 1) {
mulScalar(scaleAgg);
}
}
return 0;
}
template<>
void BaseMatrixT<real>::sumRows(BaseMatrixT& b, real scaleSum, real scaleDest) {
applyRow(aggregate::sum(), scaleDest, scaleSum, b);
}
template<>
......@@ -1524,18 +1594,22 @@ void BaseMatrixT<real>::minCols(BaseMatrixT& b) {
}
template<>
void BaseMatrixT<real>::sumCols(BaseMatrixT& b, real scale) {
applyCol(aggregate::sum(), base::binary::add2(1.0, scale), b);
void BaseMatrixT<real>::sumCols(BaseMatrixT& b, real scaleSum, real scaleDest) {
applyCol(aggregate::sum(), scaleDest, scaleSum, b);
}
template<>
void BaseMatrixT<real>::sumOfSquares(BaseMatrixT& b, BaseMatrixT& c) {
int numRows = b.height_;
int numCols = b.width_;
MatrixOffset offset(0, 0, 0, 0, 0, 0);
aggregate(aggregate::sum(), base::binary::squaredDiff(), base::binary::add(),
b, c, numRows, numCols, offset, false_type(),
true_type() /*aAsColVector*/);
void BaseMatrixT<real>::sumOfSquaredDiffs(
BaseMatrixT& b, BaseMatrixT& c, real scaleSum, real scaleDest) {
applyRow(aggregate::sum(), base::binary::squaredDiff(),
scaleDest, scaleSum, b, c);
}
template<>
void BaseMatrixT<real>::sumOfProducts(
BaseMatrixT& b, BaseMatrixT& c, real scaleSum, real scaleDest) {
applyRow(aggregate::sum(), base::binary::mul(),
scaleDest, scaleSum, b, c);
}
template class BaseMatrixT<real>;
......
......@@ -305,6 +305,23 @@ public:
template <class Agg>
int applyRow(Agg agg, BaseMatrixT& b);
/**
* a aggregate expression that apply each row of matrix b.
*
* @code
* for each row i & 0 <= j < b.width_, do:
* dst = agg(op(b[i*ldb + j], c[i*ldc + j])
* this[i] = sv(this[i], dst)
* @endcode
*/
template <class Agg, class Op, class Saver>
int applyRow(Agg agg, Op op, Saver sv, BaseMatrixT& b, BaseMatrixT& c);
// Same as the above with the special handing of sv=add2(scaleDest, scaleAgg)
template <class Agg, class Op>
int applyRow(Agg agg, Op op, real scaleDest, real scaleAgg,
BaseMatrixT& b, BaseMatrixT& c);
/**
* a aggregate expression that apply each row of matrix b.
*
......@@ -317,6 +334,10 @@ public:
template <class Agg, class Saver>
int applyRow(Agg agg, Saver sv, BaseMatrixT& b);
// Same as the above with the special handing of sv=add2(scaleDest, scaleAgg)
template <class Agg>
int applyRow(Agg agg, real scaleDest, real scaleAgg, BaseMatrixT& b);
/**
* a aggregate expression that apply each column of matrix b.
*
......@@ -340,6 +361,10 @@ public:
template <class Agg, class Saver>
int applyCol(Agg agg, Saver sv, BaseMatrixT& b);
// Same as the above with the special handing of sv=add2(scaleDest, scaleAgg)
template <class Agg>
int applyCol(Agg agg, real scaleDest, real scaleAgg, BaseMatrixT& b);
bool useGpu() const { return useGpu_; }
const T* rowBuf(size_t row) const { return data_ + width_ * row; }
......@@ -920,7 +945,9 @@ public:
void addRowScale(size_t cCol, BaseMatrixT& b, BaseMatrixT& c);
/// calculate the sum of each row of the matrix b.
void sumRows(BaseMatrixT& b);
/// this_i = scaleDest * this_i + scaleSum * \sum_j b_{ij}
void sumRows(BaseMatrixT& b, T scaleSum, T scaleDest);
/// calculate the maximum value of each row of the matrix b.
void maxRows(BaseMatrixT& b);
/// calculate the minimum value of each row of the matrix b.
......@@ -932,10 +959,18 @@ public:
void maxCols(BaseMatrixT& b);
/// calculate the minimum value of each column of the matrix b.
void minCols(BaseMatrixT& b);
void sumCols(BaseMatrixT& b, T scale);
/// calculate the sum of each row of (b - c)^2.
void sumOfSquares(BaseMatrixT& b, BaseMatrixT& c);
/// calculate the sum of each column of the matrix b.
/// this_i = scaleDest * this_i + scaleSum * \sum_j b_{ji}
void sumCols(BaseMatrixT& b, T scaleSum, T scaleDest);
/// this_i = scaleDest * this_i + scaleSum * \sum_j (b_{ij} - c_{ij})^2
void sumOfSquaredDiffs(BaseMatrixT& b, BaseMatrixT& c,
T scaleSum, T scaleDest);
/// this_i = scaleDest * this_i + scaleSum * \sum_j b_{ij} * c_{ij}
void sumOfProducts(BaseMatrixT& b, BaseMatrixT& c,
T scaleSum, T scaleDest);
/**
* @code
......
......@@ -80,4 +80,3 @@ void vTanh(const int n, const T* a, T* r);
} // namespace paddle
#endif // MATHFUNCTIONS_H_
......@@ -242,7 +242,7 @@ real GpuMatrix::getSum() {
void GpuMatrix::accumulateColSum(Matrix& src) {
CHECK_EQ(getWidth(), src.getWidth());
CHECK_EQ(getHeight(), (size_t)1);
sumCols(src, 1.0);
sumCols(src, 1.0, 1.0);
}
real GpuMatrix::getAbsSum() {
......@@ -389,7 +389,7 @@ void GpuMatrix::collectBias(Matrix& a, real scale) {
CHECK_EQ(width_, a.getWidth());
GpuSparseMatrix* sMatPtr = dynamic_cast<GpuSparseMatrix*>(&a);
if (!sMatPtr) {
sumCols(a, scale);
sumCols(a, /* scaleSum= */scale, /* scaleDest= */1);
} else {
real* data = getData();
hl_sparse_matrix_s A_d = sMatPtr->sMatrix_.get();
......@@ -589,7 +589,7 @@ void GpuMatrix::addToRows(Matrix& table, IVector& ids) {
void GpuMatrix::colMerge(Matrix& src) {
CHECK(src.height_ == height_);
if (!trans_ && !src.trans_) {
sumRows(src);
sumRows(src, /* scaleSum= */1, /* scaleDest= */0);
} else {
LOG(FATAL) << "Is not supported";
}
......@@ -599,7 +599,7 @@ void GpuMatrix::rowSum(Matrix& sum) {
CHECK_EQ(sum.getHeight(), getHeight());
CHECK_EQ(sum.getWidth(), (size_t)1);
sum.sumRows(*this);
sum.sumRows(*this, /* scaleSum= */1, /* scaleDest= */0);
}
void GpuMatrix::rowMax(Matrix& max) {
......@@ -790,7 +790,8 @@ void GpuMatrix::sumOfSquares(Matrix& output, Matrix& label) {
LOG(FATAL) << "not supported: GpuSparseMatrix as label";
}
BaseMatrix::sumOfSquares(output, label);
BaseMatrix::sumOfSquaredDiffs(output, label,
/* scaleSum= */1, /* scaleDest= */1);
}
void GpuMatrix::sumOfSquaresBp(Matrix& outputV, Matrix& label) {
......@@ -1501,7 +1502,7 @@ void CpuMatrix::accumulateColSum(Matrix& src) {
CHECK_EQ(getWidth(), src.getWidth());
CHECK_EQ(getHeight(), (size_t)1);
sumCols(src, 1.0);
sumCols(src, /* scaleSum= */1, /* scaleDest= */1);
}
real CpuMatrix::getAbsSum() {
......@@ -2188,7 +2189,7 @@ void CpuMatrix::collectBias(Matrix& a, real scale) {
CHECK_EQ(width_, a.getWidth());
CpuSparseMatrix* aptr = dynamic_cast<CpuSparseMatrix*>(&a);
if (!aptr) {
sumCols(a, scale);
sumCols(a, /* scaleSum= */scale, /* scaleDest= */1);
} else {
size_t nnz = aptr->getElementCnt();
int* cols = aptr->getCols();
......@@ -2227,7 +2228,7 @@ void CpuMatrix::sequenceAvgForward(Matrix& a,
real* dst = getData();
real* src = a.getData();
const int* starts = startsPos.getData();
MatrixPtr outMtx = Matrix::create(1, 1, false, false);
MatrixPtr outMtx = Matrix::create(nullptr, 1, width, false, false);
MatrixPtr dataMtx = Matrix::create(nullptr, 1, width, false, false);
for (size_t i = 0; i < height; i++) {
int sequenceLength = starts[i + 1] - starts[i];
......@@ -2239,13 +2240,15 @@ void CpuMatrix::sequenceAvgForward(Matrix& a,
dataMtx->setData(src + starts[i] * width, sequenceLength, width);
if (mode == 0) {
// plain average
outMtx->sumCols(*dataMtx, (real)1 / (real)sequenceLength);
outMtx->sumCols(*dataMtx, (real)1 / (real)sequenceLength,
/* scaleDest= */1);
} else if (mode == 1) {
// sum instead of average
outMtx->sumCols(*dataMtx, (real)1);
outMtx->sumCols(*dataMtx, /* scaleSum= */1, /* scaleDest= */1);
} else if (mode == 2) {
// divide by square root of sequenceLength
outMtx->sumCols(*dataMtx, (real)1 / std::sqrt(sequenceLength));
outMtx->sumCols(*dataMtx, (real)1 / std::sqrt(sequenceLength),
/* scaleDest= */1);
} else {
LOG(FATAL) << "should not reach here";
}
......@@ -2932,7 +2935,7 @@ void CpuMatrix::rowSum(Matrix& sum) {
CHECK_EQ(sum.getHeight(), getHeight());
CHECK_EQ(sum.getWidth(), (size_t)1);
sum.sumRows(*this);
sum.sumRows(*this, /* scaleSum= */1, /* scaleDest= */0);
}
void CpuMatrix::rowMaxId(IVector& maxIds) {
......@@ -3485,7 +3488,8 @@ void CpuMatrix::sumOfSquares(Matrix& output, Matrix& label) {
}
}
BaseMatrix::sumOfSquares(output, label);
BaseMatrix::sumOfSquaredDiffs(output, label,
/* scaleSum= */1, /* scaleDest= */1);
}
/* calculate the error of outputV according to label */
......
此差异已折叠。
......@@ -33,5 +33,3 @@ cmake .. -DWITH_GPU=ON -DWITH_SWIG_PY=ON -DWITH_AVX=OFF -DCUDNN_ROOT=/usr/
make -j `nproc`
cpack -D CPACK_GENERATOR='DEB' ..
mv *.deb ~/dist/gpu-noavx
......@@ -58,4 +58,3 @@ m4 -DPADDLE_WITH_GPU=ON -DPADDLE_IS_DEVEL=ON -DPADDLE_WITH_DEMO=ON \
-DPADDLE_BASE_IMAGE=nvidia/cuda:7.5-cudnn5-devel-ubuntu14.04 \
-DPADDLE_WITH_AVX=OFF \
Dockerfile.m4 > Dockerfile.gpu-noavx-demo
......@@ -2,4 +2,3 @@
set -e
mkdir -p ../../../build
cd ../../../build
......@@ -998,4 +998,3 @@ from IN B-PP
Friday NNP B-NP
's POS B-NP
Tokyo NNP I-NP
......@@ -4998,4 +4998,3 @@ However RB B-ADVP
the DT B-NP
disclosure NN I-NP
of IN B-PP
......@@ -109,4 +109,3 @@ int main(int argc, char** argv) {
}
#endif
......@@ -410,8 +410,8 @@ def RecurrentLayerGroupEnd(name):
"RecurrentLayerGroup not begin")
for pair in g_current_submodel.memories: #check exist
layer = g_layer_map[pair.layer_name]
config_assert(layer is not None, "memory declare wrong name:%s" %
pair.layer_name)
config_assert(layer is not None,
"memory declare wrong name:%s" % pair.layer_name)
memory_link = g_layer_map[pair.link_name]
config_assert(layer.size == memory_link.size,
"memory declare wrong size:%d" % memory_link.size)
......@@ -592,6 +592,20 @@ class DotMulProjection(Projection):
def calc_parameter_dims(self, input_size, output_size):
return [1, output_size]
# ScalingProjection
@config_class
class ScalingProjection(Projection):
type = 'scaling'
def calc_output_size(self, input_layer_config):
return input_layer_config.size
def calc_parameter_size(self, input_size, output_size):
return 1
def calc_parameter_dims(self, input_size, output_size):
return [1, 1]
@config_class
class TableProjection(Projection):
......@@ -672,8 +686,8 @@ class ConvProjection(Projection):
parse_conv(conv_conf, input_layer_name, self.proj_conf.conv_conf,
num_filters)
# TODO: support rectangle input
self.proj_conf.output_size = (self.proj_conf.conv_conf.output_x**
2) * num_filters
self.proj_conf.output_size = (self.proj_conf.conv_conf.output_x
**2) * num_filters
def calc_output_size(self, input_layer_config):
return self.proj_conf.output_size
......@@ -2779,8 +2793,8 @@ class ConcatenateLayer2(LayerBase):
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs, **
xargs)
super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
**xargs)
config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
input_layer = self.get_input_layer(0)
size = input_layer.size
......@@ -2862,22 +2876,22 @@ class MDLstmLayer(LayerBase):
active_state_type="sigmoid",
bias=True,
**xargs):
super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs, **
xargs)
super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
**xargs)
config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
input_layer = self.get_input_layer(0)
dim_num = len(directions)
#check input_layer.size is divided by (3+dim_num)
config_assert(input_layer.size %
(3 + dim_num) == 0, "size % (dim_num) should be 0!")
config_assert(input_layer.size % (3 + dim_num) == 0,
"size % (dim_num) should be 0!")
size = input_layer.size / (3 + dim_num)
self.set_layer_size(size)
self.config.active_gate_type = active_gate_type
self.config.active_state_type = active_state_type
for i in xrange(len(directions)):
self.config.directions.append(int(directions[i]))
self.create_input_parameter(0, size * size *
(3 + dim_num), [size, size, 3 + dim_num])
self.create_input_parameter(0, size * size * (3 + dim_num),
[size, size, 3 + dim_num])
#bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
self.create_bias_parameter(bias, size * (5 + 2 * dim_num))
......@@ -2915,8 +2929,8 @@ class GruStepLayer(LayerBase):
active_gate_type="sigmoid",
bias=True,
**xargs):
super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs, **
xargs)
super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
**xargs)
config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
input_layer0 = self.get_input_layer(0)
input_layer1 = self.get_input_layer(1)
......
......@@ -65,6 +65,7 @@ __all__ = [
'StaticInput',
'expand_layer',
'scaling_layer',
'scaling_projection',
'power_layer',
'interpolation_layer',
'bilinear_interp_layer',
......@@ -458,7 +459,7 @@ def identity_projection(input, offset=None):
:type input: LayerOutput
:param offset: Offset, None if use default.
:type offset: int
:return: A IdentityProjection or IdentityOffsetProjection Object
:return: A IdentityProjection or IdentityOffsetProjection object
:rtype: IdentityProjection or IdentityOffsetProjection
"""
if offset is None:
......@@ -471,6 +472,34 @@ def identity_projection(input, offset=None):
return proj
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
"""
scaling_projection multiplies the input with a scalar parameter and add to
the output.
.. math::
out += w * in
The example usage is:
.. code-block:: python
proj = scaling_projection(input=layer)
:param input: Input Layer.
:type input: LayerOutput
:param param_attr: Parameter config, None if use default.
:type param_attr: ParameterAttribute
:return: A ScalingProjection object
:rtype: ScalingProjection
"""
proj = ScalingProjection(input_layer_name=input.name,
**param_attr.attr)
proj.origin = input
return proj
@wrap_param_attr_default()
def dotmul_projection(input, param_attr=None):
"""
......
......@@ -26,6 +26,7 @@ with mixed_layer() as m5:
with mixed_layer() as m6:
m6 += dotmul_operator(a=m3, b=m4)
m6 += scaling_projection(m3)
img = data_layer(name='img', size=32 * 32)
flt = data_layer(name='filter', size=3 * 3 * 1 * 64)
......
......@@ -111,13 +111,23 @@ layers {
inputs {
input_layer_name: "__mixed_2__"
}
inputs {
input_layer_name: "__mixed_2__"
input_parameter_name: "___mixed_5__.w1"
proj_conf {
type: "scaling"
name: "___mixed_5__.w1"
input_size: 100
output_size: 100
}
}
inputs {
input_layer_name: "__mixed_3__"
}
operator_confs {
type: "dot_mul"
input_indices: 0
input_indices: 1
input_indices: 2
input_sizes: 100
input_sizes: 100
output_size: 100
......@@ -258,6 +268,16 @@ parameters {
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___mixed_5__.w1"
size: 1
initial_mean: 0.0
initial_std: 1.0
dims: 1
dims: 1
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_7__.w0"
size: 30000
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册