Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
fe125780
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fe125780
编写于
9月 27, 2020
作者:
B
baiyfbupt
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
migrate code example and doc
上级
96daa259
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
38 addition
and
106 deletion
+38
-106
python/paddle/fluid/layers/loss.py
python/paddle/fluid/layers/loss.py
+20
-70
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+18
-28
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+0
-4
python/paddle/nn/functional/pooling.py
python/paddle/nn/functional/pooling.py
+0
-4
未找到文件。
python/paddle/fluid/layers/loss.py
浏览文件 @
fe125780
...
...
@@ -316,47 +316,24 @@ def square_error_cost(input, label):
Out = (input - label)^2
Parameters:
input (
Variable
): Input tensor, the data type should be float32.
label (
Variable
): Label tensor, the data type should be float32.
input (
Tensor
): Input tensor, the data type should be float32.
label (
Tensor
): Label tensor, the data type should be float32.
Returns:
The tensor
variable
storing the element-wise squared error
\
The tensor storing the element-wise squared error
\
difference between input and label.
Return type:
Variable
.
Return type:
Tensor
.
Examples:
.. code-block:: python
# declarative mode
import paddle.fluid as fluid
import numpy as np
input = fluid.data(name="input", shape=[1])
label = fluid.data(name="label", shape=[1])
output = fluid.layers.square_error_cost(input,label)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.array([1.5]).astype("float32")
label_data = np.array([1.7]).astype("float32")
output_data = exe.run(fluid.default_main_program(),
feed={"input":input_data, "label":label_data},
fetch_list=[output],
return_numpy=True)
print(output_data)
# [array([0.04000002], dtype=float32)]
# imperative mode
import paddle.fluid.dygraph as dg
with dg.guard(place) as g:
input = dg.to_variable(input_data)
label = dg.to_variable(label_data)
output = fluid.layers.square_error_cost(input, label)
print(output.numpy())
import paddle
input = paddle.to_tensor([1.1, 1.9])
label = paddle.to_tensor([1.0, 2.0])
output = paddle.fluid.layers.square_error_cost(input, label)
# output = [0.01, 0.01]
# [0.04000002]
"""
...
...
@@ -1777,9 +1754,6 @@ def npair_loss(anchor, positive, labels, l2_reg=0.002):
def
mse_loss
(
input
,
label
):
"""
:alias_main: paddle.nn.functional.mse_loss
:alias: paddle.nn.functional.mse_loss,paddle.nn.functional.loss.mse_loss
:old_api: paddle.fluid.layers.mse_loss
This op accepts input predications and target label and returns the mean square error.
...
...
@@ -1790,46 +1764,22 @@ def mse_loss(input, label):
Out = MEAN((input - label)^2)
Parameters:
input (
Variable
): Input tensor, the data type should be float32.
label (
Variable
): Label tensor, the data type should be float32.
input (
Tensor
): Input tensor, the data type should be float32.
label (
Tensor
): Label tensor, the data type should be float32.
Returns:
Variable: The tensor variable
storing the mean square error difference of input and label.
Tensor: The tensor
storing the mean square error difference of input and label.
Return type:
Variable
.
Return type:
Tensor
.
Examples:
.. code-block:: python
# declarative mode
import paddle.fluid as fluid
import numpy as np
input = fluid.data(name="input", shape=[1])
label = fluid.data(name="label", shape=[1])
output = fluid.layers.mse_loss(input,label)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.array([1.5]).astype("float32")
label_data = np.array([1.7]).astype("float32")
output_data = exe.run(fluid.default_main_program(),
feed={"input":input_data, "label":label_data},
fetch_list=[output],
return_numpy=True)
print(output_data)
# [array([0.04000002], dtype=float32)]
# imperative mode
import paddle.fluid.dygraph as dg
with dg.guard(place) as g:
input = dg.to_variable(input_data)
label = dg.to_variable(label_data)
output = fluid.layers.mse_loss(input, label)
print(output.numpy())
# [0.04000002]
import paddle
input = paddle.to_tensor([1.1, 1.9])
label = paddle.to_tensor([1.0, 2.0])
output = paddle.fluid.layers.mse_loss(input, label)
# output = 0.01
"""
check_variable_and_dtype
(
input
,
"input"
,
[
'float32'
,
'float64'
],
'mse_loss'
)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
fe125780
...
...
@@ -2306,7 +2306,7 @@ def pool3d(input,
return pool_out
@deprecated(since="2.0.0"
, update_to="paddle.nn.functional.adaptive_pool2d"
)
@deprecated(since="2.0.0")
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
pool_size,
...
...
@@ -2314,9 +2314,6 @@ def adaptive_pool2d(input,
require_index=False,
name=None):
"""
:alias_main: paddle.nn.functional.adaptive_pool2d
:alias: paddle.nn.functional.adaptive_pool2d,paddle.nn.functional.pooling.adaptive_pool2d
:old_api: paddle.fluid.layers.adaptive_pool2d
This operation calculates the output based on the input, pool_size,
pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
...
...
@@ -2340,7 +2337,7 @@ def adaptive_pool2d(input,
Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
Args:
input (
Variable
): The input tensor of pooling operator, which is a 4-D tensor
input (
Tensor
): The input tensor of pooling operator, which is a 4-D tensor
with shape [N, C, H, W]. The format of input tensor is NCHW,
where N is batch size, C is the number of channels, H is the
height of the feature, and W is the width of the feature.
...
...
@@ -2355,7 +2352,7 @@ def adaptive_pool2d(input,
None by default.
Returns:
Variable
: The output tensor of adaptive pooling result. The data type is same
Tensor
: The output tensor of adaptive pooling result. The data type is same
as input tensor.
Raises:
...
...
@@ -2381,9 +2378,9 @@ def adaptive_pool2d(input,
# wend = ceil((i + 1) * W / n)
# output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
#
import paddle
.fluid as fluid
data =
fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32'
)
pool_out = fluid.layers.adaptive_pool2d(
import paddle
data =
paddle.rand(shape=[1,3,32,32]
)
pool_out =
paddle.
fluid.layers.adaptive_pool2d(
input=data,
pool_size=[3, 3],
pool_type='avg')
...
...
@@ -2403,9 +2400,9 @@ def adaptive_pool2d(input,
# wend = ceil((i + 1) * W / n)
# output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
#
import paddle
.fluid as fluid
data =
fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32'
)
pool_out = fluid.layers.adaptive_pool2d(
import paddle
data =
paddle.rand(shape=[1,3,32,32]
)
pool_out =
paddle.
fluid.layers.adaptive_pool2d(
input=data,
pool_size=[3, 3],
pool_type='max')
...
...
@@ -2454,7 +2451,7 @@ def adaptive_pool2d(input,
return (pool_out, mask) if require_index else pool_out
@deprecated(since="2.0.0"
, update_to="paddle.nn.functional.adaptive_pool3d"
)
@deprecated(since="2.0.0")
@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
pool_size,
...
...
@@ -2462,9 +2459,6 @@ def adaptive_pool3d(input,
require_index=False,
name=None):
"""
:alias_main: paddle.nn.functional.adaptive_pool3d
:alias: paddle.nn.functional.adaptive_pool3d,paddle.nn.functional.pooling.adaptive_pool3d
:old_api: paddle.fluid.layers.adaptive_pool3d
This operation calculates the output based on the input, pool_size,
pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
...
...
@@ -2493,7 +2487,7 @@ def adaptive_pool3d(input,
Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
Args:
input (
Variable
): The input tensor of pooling operator, which is a 5-D tensor with
input (
Tensor
): The input tensor of pooling operator, which is a 5-D tensor with
shape [N, C, D, H, W]. The format of input tensor is NCDHW, where
N is batch size, C is the number of channels, D is the depth of the feature,
H is the height of the feature, and W is the width of the feature.
...
...
@@ -2508,7 +2502,7 @@ def adaptive_pool3d(input,
None by default.
Returns:
Variable
: The output tensor of adaptive pooling result. The data type is same as input tensor.
Tensor
: The output tensor of adaptive pooling result. The data type is same as input tensor.
Raises:
ValueError: 'pool_type' is not 'max' nor 'avg'.
...
...
@@ -2538,11 +2532,9 @@ def adaptive_pool3d(input,
# avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
#
import paddle.fluid as fluid
data = fluid.data(
name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
pool_out = fluid.layers.adaptive_pool3d(
import paddle
data = paddle.rand(shape=[1,3,32,32,32])
pool_out = paddle.fluid.layers.adaptive_pool3d(
input=data,
pool_size=[3, 3, 3],
pool_type='avg')
...
...
@@ -2567,11 +2559,9 @@ def adaptive_pool3d(input,
# avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
#
import paddle.fluid as fluid
data = fluid.data(
name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
pool_out = fluid.layers.adaptive_pool3d(
import paddle
data = paddle.rand(shape=[1,3,32,32,32])
pool_out = paddle.fluid.layers.adaptive_pool3d(
input=data,
pool_size=[3, 3, 3],
pool_type='max')
...
...
python/paddle/nn/functional/__init__.py
浏览文件 @
fe125780
...
...
@@ -174,16 +174,12 @@ from .norm import normalize #DEFINE_ALIAS
from
.pooling
import
pool2d
#DEFINE_ALIAS
from
.pooling
import
pool3d
#DEFINE_ALIAS
from
.pooling
import
avg_pool1d
#DEFINE_ALIAS
from
.pooling
import
adaptive_pool2d
#DEFINE_ALIAS
from
.pooling
import
adaptive_pool3d
#DEFINE_ALIAS
from
.pooling
import
avg_pool2d
#DEFINE_ALIAS
from
.pooling
import
avg_pool3d
#DEFINE_ALIAS
from
.pooling
import
max_pool1d
#DEFINE_ALIAS
from
.pooling
import
max_pool2d
#DEFINE_ALIAS
from
.pooling
import
max_pool3d
#DEFINE_ALIAS
from
.pooling
import
adaptive_pool2d
#DEFINE_ALIAS
from
.pooling
import
adaptive_pool3d
#DEFINE_ALIAS
from
.pooling
import
adaptive_max_pool1d
#DEFINE_ALIAS
from
.pooling
import
adaptive_max_pool2d
#DEFINE_ALIAS
from
.pooling
import
adaptive_max_pool3d
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/pooling.py
浏览文件 @
fe125780
...
...
@@ -15,8 +15,6 @@
# TODO: define pooling functions
from
...fluid.layers
import
pool2d
#DEFINE_ALIAS
from
...fluid.layers
import
pool3d
#DEFINE_ALIAS
from
...fluid.layers
import
adaptive_pool2d
#DEFINE_ALIAS
from
...fluid.layers
import
adaptive_pool3d
#DEFINE_ALIAS
from
...fluid
import
core
from
...fluid.framework
import
in_dygraph_mode
from
...fluid.layers
import
utils
,
LayerHelper
,
unsqueeze
,
squeeze
...
...
@@ -25,8 +23,6 @@ from ...fluid.data_feeder import check_type, check_variable_and_dtype
__all__
=
[
'pool2d'
,
'pool3d'
,
'adaptive_pool2d'
,
'adaptive_pool3d'
,
'avg_pool1d'
,
'avg_pool2d'
,
'avg_pool3d'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录