Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
fb7ca48c
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fb7ca48c
编写于
5月 01, 2018
作者:
T
Thuan Nguyen
提交者:
GitHub
5月 01, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add image classification unit test using simplified fluid API (#10306)
上级
95d2651b
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
269 addition
and
0 deletion
+269
-0
python/paddle/fluid/tests/book/image_classification/notest_image_classification_resnet.py
...mage_classification/notest_image_classification_resnet.py
+145
-0
python/paddle/fluid/tests/book/image_classification/notest_image_classification_vgg.py
...k/image_classification/notest_image_classification_vgg.py
+124
-0
未找到文件。
python/paddle/fluid/tests/book/image_classification/notest_image_classification_resnet.py
0 → 100644
浏览文件 @
fb7ca48c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
numpy
def
resnet_cifar10
(
input
,
depth
=
32
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
bias_attr
=
False
):
tmp
=
fluid
.
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
bias_attr
=
bias_attr
)
return
fluid
.
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
)
def
shortcut
(
input
,
ch_in
,
ch_out
,
stride
):
if
ch_in
!=
ch_out
:
return
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
0
,
None
)
else
:
return
input
def
basicblock
(
input
,
ch_in
,
ch_out
,
stride
):
tmp
=
conv_bn_layer
(
input
,
ch_out
,
3
,
stride
,
1
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
,
act
=
None
,
bias_attr
=
True
)
short
=
shortcut
(
input
,
ch_in
,
ch_out
,
stride
)
return
fluid
.
layers
.
elementwise_add
(
x
=
tmp
,
y
=
short
,
act
=
'relu'
)
def
layer_warp
(
block_func
,
input
,
ch_in
,
ch_out
,
count
,
stride
):
tmp
=
block_func
(
input
,
ch_in
,
ch_out
,
stride
)
for
i
in
range
(
1
,
count
):
tmp
=
block_func
(
tmp
,
ch_out
,
ch_out
,
1
)
return
tmp
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
/
6
conv1
=
conv_bn_layer
(
input
=
input
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
16
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
32
,
64
,
n
,
2
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
)
return
pool
def
inference_network
():
classdim
=
10
data_shape
=
[
3
,
32
,
32
]
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
net
=
resnet_cifar10
(
images
,
32
)
predict
=
fluid
.
layers
.
fc
(
input
=
net
,
size
=
classdim
,
act
=
'softmax'
)
return
predict
def
train_network
():
predict
=
inference_network
()
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
avg_cost
,
accuracy
def
train
(
use_cuda
,
save_path
):
BATCH_SIZE
=
128
EPOCH_NUM
=
1
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
128
*
10
),
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
BATCH_SIZE
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndIteration
):
if
(
event
.
batch_id
%
10
)
==
0
:
avg_cost
,
accuracy
=
trainer
.
test
(
reader
=
test_reader
)
print
(
'BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'
.
format
(
event
.
batch_id
+
1
,
avg_cost
,
accuracy
))
if
accuracy
>
0.01
:
# Low threshold for speeding up CI
trainer
.
params
.
save
(
save_path
)
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
train_network
,
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
),
place
=
place
,
event_handler
=
event_handler
)
trainer
.
train
(
train_reader
,
EPOCH_NUM
,
event_handler
=
event_handler
)
def
infer
(
use_cuda
,
save_path
):
params
=
fluid
.
Params
(
save_path
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
inference_network
,
params
,
place
=
place
)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range
# [0, 1.0].
tensor_img
=
numpy
.
random
.
rand
(
1
,
3
,
32
,
32
).
astype
(
"float32"
)
results
=
inferencer
.
infer
({
'pixel'
:
tensor_img
})
print
(
"infer results: "
,
results
)
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"image_classification_resnet.inference.model"
train
(
use_cuda
,
save_path
)
infer
(
use_cuda
,
save_path
)
if
__name__
==
'__main__'
:
for
use_cuda
in
(
False
,
True
):
main
(
use_cuda
=
use_cuda
)
python/paddle/fluid/tests/book/image_classification/notest_image_classification_vgg.py
0 → 100644
浏览文件 @
fb7ca48c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
numpy
def
vgg16_bn_drop
(
input
):
def
conv_block
(
input
,
num_filter
,
groups
,
dropouts
):
return
fluid
.
nets
.
img_conv_group
(
input
=
input
,
pool_size
=
2
,
pool_stride
=
2
,
conv_num_filter
=
[
num_filter
]
*
groups
,
conv_filter_size
=
3
,
conv_act
=
'relu'
,
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
'max'
)
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
])
conv2
=
conv_block
(
conv1
,
128
,
2
,
[
0.4
,
0
])
conv3
=
conv_block
(
conv2
,
256
,
3
,
[
0.4
,
0.4
,
0
])
conv4
=
conv_block
(
conv3
,
512
,
3
,
[
0.4
,
0.4
,
0
])
conv5
=
conv_block
(
conv4
,
512
,
3
,
[
0.4
,
0.4
,
0
])
drop
=
fluid
.
layers
.
dropout
(
x
=
conv5
,
dropout_prob
=
0.5
)
fc1
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
4096
,
act
=
None
)
bn
=
fluid
.
layers
.
batch_norm
(
input
=
fc1
,
act
=
'relu'
)
drop2
=
fluid
.
layers
.
dropout
(
x
=
bn
,
dropout_prob
=
0.5
)
fc2
=
fluid
.
layers
.
fc
(
input
=
drop2
,
size
=
4096
,
act
=
None
)
return
fc2
def
inference_network
():
classdim
=
10
data_shape
=
[
3
,
32
,
32
]
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
net
=
vgg16_bn_drop
(
images
)
predict
=
fluid
.
layers
.
fc
(
input
=
net
,
size
=
classdim
,
act
=
'softmax'
)
return
predict
def
train_network
():
predict
=
inference_network
()
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
avg_cost
,
accuracy
def
train
(
use_cuda
,
save_path
):
BATCH_SIZE
=
128
EPOCH_NUM
=
1
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
128
*
10
),
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
BATCH_SIZE
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndIteration
):
if
(
event
.
batch_id
%
10
)
==
0
:
avg_cost
,
accuracy
=
trainer
.
test
(
reader
=
test_reader
)
print
(
'BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'
.
format
(
event
.
batch_id
+
1
,
avg_cost
,
accuracy
))
if
accuracy
>
0.01
:
# Low threshold for speeding up CI
trainer
.
params
.
save
(
save_path
)
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
train_network
,
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
),
place
=
place
,
event_handler
=
event_handler
)
trainer
.
train
(
train_reader
,
EPOCH_NUM
,
event_handler
=
event_handler
)
def
infer
(
use_cuda
,
save_path
):
params
=
fluid
.
Params
(
save_path
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
inference_network
,
params
,
place
=
place
)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range
# [0, 1.0].
tensor_img
=
numpy
.
random
.
rand
(
1
,
3
,
32
,
32
).
astype
(
"float32"
)
results
=
inferencer
.
infer
({
'pixel'
:
tensor_img
})
print
(
"infer results: "
,
results
)
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"image_classification_vgg.inference.model"
train
(
use_cuda
,
save_path
)
infer
(
use_cuda
,
save_path
)
if
__name__
==
'__main__'
:
for
use_cuda
in
(
False
,
True
):
main
(
use_cuda
=
use_cuda
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录