diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_flatten.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_flatten.py new file mode 100644 index 0000000000000000000000000000000000000000..4b461c75f0b28d04fb2ed149fe08304a3f1894e7 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_flatten.py @@ -0,0 +1,360 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons +from program_config import TensorConfig, ProgramConfig +import numpy as np +import paddle.inference as paddle_infer +from functools import partial +from typing import Optional, List, Callable, Dict, Any, Set + + +class TrtConvertFlattenTest_dim_2(TrtLayerAutoScanTest): + def is_program_valid(self, program_config: ProgramConfig) -> bool: + return True + + def sample_program_configs(self): + def generate_input(batch): + return np.random.random([batch, 32]).astype(np.float32) + + for batch in [1, 2, 4]: + for axis in [0, 1]: + for type in ["flatten", "flatten2"]: + if type == "flatten": + op_outputs = {"Out": ["output_data"]} + else: + op_outputs = { + "Out": ["output_data"], + "XShape": ["xshape_data"] + } + dics = [{"axis": axis}] + ops_config = [{ + "op_type": "flatten", + "op_inputs": { + "X": ["input_data"] + }, + "op_outputs": op_outputs, + "op_attrs": dics[0] + }] + ops = self.generate_op_config(ops_config) + + program_config = ProgramConfig( + ops=ops, + weights={}, + inputs={ + "input_data": TensorConfig( + data_gen=partial(generate_input, batch)) + }, + outputs=["output_data"]) + + yield program_config + + def sample_predictor_configs( + self, program_config) -> (paddle_infer.Config, List[int], float): + def generate_dynamic_shape(attrs): + self.dynamic_shape.min_input_shape = {"input_data": [1, 8]} + self.dynamic_shape.max_input_shape = {"input_data": [4, 64]} + self.dynamic_shape.opt_input_shape = {"input_data": [2, 32]} + + def clear_dynamic_shape(): + self.dynamic_shape.max_input_shape = {} + self.dynamic_shape.min_input_shape = {} + self.dynamic_shape.opt_input_shape = {} + + def generate_trt_nodes_num(attrs, dynamic_shape): + if attrs[0]['axis'] == 1: + return 1, 2 + else: + return 0, 3 + + attrs = [ + program_config.ops[i].attrs + for i in range(len(program_config.ops)) + ] + + # for static_shape + clear_dynamic_shape() + yield self.create_inference_config(), generate_trt_nodes_num( + attrs, False), 1e-5 + self.trt_param.precision = paddle_infer.PrecisionType.Half + yield self.create_inference_config(), generate_trt_nodes_num( + attrs, False), 1e-5 + + # for dynamic_shape + generate_dynamic_shape(attrs) + self.trt_param.precision = paddle_infer.PrecisionType.Float32 + yield self.create_inference_config(), generate_trt_nodes_num(attrs, + True), 1e-5 + self.trt_param.precision = paddle_infer.PrecisionType.Half + yield self.create_inference_config(), generate_trt_nodes_num(attrs, + True), 1e-5 + + def test(self): + self.run_test() + + +class TrtConvertFlattenTest_dim_3(TrtLayerAutoScanTest): + def is_program_valid(self, program_config: ProgramConfig) -> bool: + return True + + def sample_program_configs(self): + def generate_input(batch): + return np.random.random([batch, 32, 64]).astype(np.float32) + + for batch in [1, 2, 4]: + for axis in [0, 1, 2]: + for type in ["flatten", "flatten2"]: + if type == "flatten": + op_outputs = {"Out": ["output_data"]} + else: + op_outputs = { + "Out": ["output_data"], + "XShape": ["xshape_data"] + } + dics = [{"axis": axis}] + ops_config = [{ + "op_type": "flatten", + "op_inputs": { + "X": ["input_data"] + }, + "op_outputs": op_outputs, + "op_attrs": dics[0] + }] + ops = self.generate_op_config(ops_config) + + program_config = ProgramConfig( + ops=ops, + weights={}, + inputs={ + "input_data": TensorConfig( + data_gen=partial(generate_input, batch)) + }, + outputs=["output_data"]) + + yield program_config + + def sample_predictor_configs( + self, program_config) -> (paddle_infer.Config, List[int], float): + def generate_dynamic_shape(attrs): + self.dynamic_shape.min_input_shape = {"input_data": [1, 8, 8]} + self.dynamic_shape.max_input_shape = {"input_data": [4, 64, 768]} + self.dynamic_shape.opt_input_shape = {"input_data": [2, 32, 256]} + + def clear_dynamic_shape(): + self.dynamic_shape.max_input_shape = {} + self.dynamic_shape.min_input_shape = {} + self.dynamic_shape.opt_input_shape = {} + + def generate_trt_nodes_num(attrs, dynamic_shape): + if attrs[0]['axis'] == 1: + return 1, 2 + else: + return 0, 3 + + attrs = [ + program_config.ops[i].attrs + for i in range(len(program_config.ops)) + ] + + # for static_shape + clear_dynamic_shape() + yield self.create_inference_config(), generate_trt_nodes_num( + attrs, False), 1e-5 + self.trt_param.precision = paddle_infer.PrecisionType.Half + yield self.create_inference_config(), generate_trt_nodes_num( + attrs, False), 1e-5 + + # for dynamic_shape + generate_dynamic_shape(attrs) + self.trt_param.precision = paddle_infer.PrecisionType.Float32 + yield self.create_inference_config(), generate_trt_nodes_num(attrs, + True), 1e-5 + self.trt_param.precision = paddle_infer.PrecisionType.Half + yield self.create_inference_config(), generate_trt_nodes_num(attrs, + True), 1e-5 + + def test(self): + self.run_test() + + +class TrtConvertFlattenTest_dim_4(TrtLayerAutoScanTest): + def is_program_valid(self, program_config: ProgramConfig) -> bool: + return True + + def sample_program_configs(self): + def generate_input(batch): + return np.random.random([batch, 8, 8, 8]).astype(np.float32) + + for batch in [1, 2, 4]: + for axis in [0, 1, 2, 3]: + for type in ["flatten", "flatten2"]: + if type == "flatten": + op_outputs = {"Out": ["output_data"]} + else: + op_outputs = { + "Out": ["output_data"], + "XShape": ["xshape_data"] + } + dics = [{"axis": axis}] + ops_config = [{ + "op_type": "flatten", + "op_inputs": { + "X": ["input_data"] + }, + "op_outputs": op_outputs, + "op_attrs": dics[0] + }] + ops = self.generate_op_config(ops_config) + + program_config = ProgramConfig( + ops=ops, + weights={}, + inputs={ + "input_data": TensorConfig( + data_gen=partial(generate_input, batch)) + }, + outputs=["output_data"]) + + yield program_config + + def sample_predictor_configs( + self, program_config) -> (paddle_infer.Config, List[int], float): + def generate_dynamic_shape(attrs): + self.dynamic_shape.min_input_shape = {"input_data": [1, 4, 4, 4]} + self.dynamic_shape.max_input_shape = {"input_data": [4, 32, 64, 64]} + self.dynamic_shape.opt_input_shape = {"input_data": [2, 16, 16, 8]} + + def clear_dynamic_shape(): + self.dynamic_shape.max_input_shape = {} + self.dynamic_shape.min_input_shape = {} + self.dynamic_shape.opt_input_shape = {} + + def generate_trt_nodes_num(attrs, dynamic_shape): + if attrs[0]['axis'] == 1: + return 1, 2 + else: + return 0, 3 + + attrs = [ + program_config.ops[i].attrs + for i in range(len(program_config.ops)) + ] + + # for static_shape + clear_dynamic_shape() + yield self.create_inference_config(), generate_trt_nodes_num( + attrs, False), 1e-5 + self.trt_param.precision = paddle_infer.PrecisionType.Half + yield self.create_inference_config(), generate_trt_nodes_num( + attrs, False), 1e-5 + + # for dynamic_shape + generate_dynamic_shape(attrs) + self.trt_param.precision = paddle_infer.PrecisionType.Float32 + yield self.create_inference_config(), generate_trt_nodes_num(attrs, + True), 1e-5 + self.trt_param.precision = paddle_infer.PrecisionType.Half + yield self.create_inference_config(), generate_trt_nodes_num(attrs, + True), 1e-5 + + def test(self): + self.run_test() + + +class TrtConvertFlattenTest_dim_5(TrtLayerAutoScanTest): + def is_program_valid(self, program_config: ProgramConfig) -> bool: + return True + + def sample_program_configs(self): + def generate_input(batch): + return np.random.random([batch, 8, 8, 8]).astype(np.float32) + + for batch in [1, 2, 4]: + for axis in [0, 1, 2, 3, 4]: + for type in ["flatten", "flatten2"]: + if type == "flatten": + op_outputs = {"Out": ["output_data"]} + else: + op_outputs = { + "Out": ["output_data"], + "XShape": ["xshape_data"] + } + dics = [{"axis": axis}] + ops_config = [{ + "op_type": "flatten", + "op_inputs": { + "X": ["input_data"] + }, + "op_outputs": op_outputs, + "op_attrs": dics[0] + }] + ops = self.generate_op_config(ops_config) + + program_config = ProgramConfig( + ops=ops, + weights={}, + inputs={ + "input_data": TensorConfig( + data_gen=partial(generate_input, batch)) + }, + outputs=["output_data"]) + + yield program_config + + def sample_predictor_configs( + self, program_config) -> (paddle_infer.Config, List[int], float): + def generate_dynamic_shape(attrs): + self.dynamic_shape.min_input_shape = {"input_data": [1, 4, 4, 4]} + self.dynamic_shape.max_input_shape = {"input_data": [4, 32, 64, 64]} + self.dynamic_shape.opt_input_shape = {"input_data": [2, 16, 16, 8]} + + def clear_dynamic_shape(): + self.dynamic_shape.max_input_shape = {} + self.dynamic_shape.min_input_shape = {} + self.dynamic_shape.opt_input_shape = {} + + def generate_trt_nodes_num(attrs, dynamic_shape): + if attrs[0]['axis'] == 1: + return 1, 2 + else: + return 0, 3 + + attrs = [ + program_config.ops[i].attrs + for i in range(len(program_config.ops)) + ] + + # for static_shape + clear_dynamic_shape() + yield self.create_inference_config(), generate_trt_nodes_num( + attrs, False), 1e-5 + self.trt_param.precision = paddle_infer.PrecisionType.Half + yield self.create_inference_config(), generate_trt_nodes_num( + attrs, False), 1e-5 + + # for dynamic_shape + generate_dynamic_shape(attrs) + self.trt_param.precision = paddle_infer.PrecisionType.Float32 + yield self.create_inference_config(), generate_trt_nodes_num(attrs, + True), 1e-5 + self.trt_param.precision = paddle_infer.PrecisionType.Half + yield self.create_inference_config(), generate_trt_nodes_num(attrs, + True), 1e-5 + + def test(self): + self.run_test() + + +if __name__ == "__main__": + unittest.main()