diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec new file mode 100644 index 0000000000000000000000000000000000000000..50454c6a3ef2b099cb4e8cf2eaad61917c613de9 --- /dev/null +++ b/paddle/fluid/API.spec @@ -0,0 +1,438 @@ +paddle.fluid.Variable.__init__ ArgSpec(args=['self', 'block', 'type', 'name', 'shape', 'dtype', 'lod_level', 'capacity', 'persistable', 'error_clip', 'stop_gradient', 'is_data'], varargs=None, keywords='kwargs', defaults=(VarType.LOD_TENSOR, None, None, None, None, None, None, None, False, False)) +paddle.fluid.Variable.astype ArgSpec(args=['self', 'dtype'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Variable.set_desc ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Variable.set_error_clip ArgSpec(args=['self', 'error_clip'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Variable.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.Program.__init__ ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Program.block ArgSpec(args=['self', 'index'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Program.clone ArgSpec(args=['self', 'for_test'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.Program.copy_data_info_from ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Program.create_block ArgSpec(args=['self', 'parent_idx'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.Program.current_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Program.get_desc ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Program.global_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Program.inference_optimize ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Program.list_vars ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Program.optimized_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.Program.parse_from_string ArgSpec(args=['binary_str'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Program.prune ArgSpec(args=['self', 'targets'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Program.rollback ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Program.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.Operator.__init__ ArgSpec(args=['self', 'block', 'desc', 'type', 'inputs', 'outputs', 'attrs'], varargs=None, keywords=None, defaults=(None, None, None, None)) +paddle.fluid.Operator.all_attrs ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Operator.attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Operator.attr_type ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Operator.block_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Operator.has_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Operator.has_kernel ArgSpec(args=['self', 'op_type'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Operator.input ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Operator.output ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Operator.rename_input ArgSpec(args=['self', 'old_name', 'new_name'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Operator.rename_output ArgSpec(args=['self', 'old_name', 'new_name'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Operator.set_attr ArgSpec(args=['self', 'name', 'val'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Operator.to_string ArgSpec(args=['self', 'throw_on_error'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Parameter.__init__ ArgSpec(args=['self', 'block', 'shape', 'dtype'], varargs=None, keywords='kwargs', defaults=None) +paddle.fluid.Parameter.astype ArgSpec(args=['self', 'dtype'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Parameter.set_desc ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Parameter.set_error_clip ArgSpec(args=['self', 'error_clip'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Parameter.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.default_startup_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None) +paddle.fluid.default_main_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None) +paddle.fluid.program_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.get_var ArgSpec(args=['name', 'program'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.Executor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Executor.as_lodtensor ArgSpec(args=['self', 'data'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Executor.begin_pass ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Executor.end_pass ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Executor.run ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False)) +paddle.fluid.global_scope ArgSpec(args=[], varargs=None, keywords=None, defaults=None) +paddle.fluid.scope_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.fetch_var ArgSpec(args=['name', 'scope', 'return_numpy'], varargs=None, keywords=None, defaults=(None, True)) +paddle.fluid.Go.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.Go.construct_go_op ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.make_channel ArgSpec(args=['dtype', 'capacity'], varargs=None, keywords=None, defaults=(0,)) +paddle.fluid.channel_send ArgSpec(args=['channel', 'value', 'is_copy'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.channel_recv ArgSpec(args=['channel', 'return_value'], varargs=None, keywords=None, defaults=None) +paddle.fluid.channel_close ArgSpec(args=['channel'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Select.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.Select.case ArgSpec(args=['self', 'channel_action_fn', 'channel', 'value', 'is_copy'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.Select.default ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Trainer.__init__ ArgSpec(args=['self', 'train_func', 'optimizer_func', 'param_path', 'place', 'parallel', 'checkpoint_config'], varargs=None, keywords=None, defaults=(None, None, False, None)) +paddle.fluid.Trainer.save_params ArgSpec(args=['self', 'param_path'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Trainer.stop ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Trainer.test ArgSpec(args=['self', 'reader', 'feed_order'], varargs=None, keywords=None, defaults=None) +paddle.fluid.Trainer.train ArgSpec(args=['self', 'num_epochs', 'event_handler', 'reader', 'feed_order'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.BeginEpochEvent.__init__ ArgSpec(args=['self', 'epoch_id'], varargs=None, keywords=None, defaults=None) +paddle.fluid.EndEpochEvent.__init__ ArgSpec(args=['self', 'epoch_id'], varargs=None, keywords=None, defaults=None) +paddle.fluid.BeginStepEvent.__init__ ArgSpec(args=['self', 'epoch_id', 'step_id'], varargs=None, keywords=None, defaults=None) +paddle.fluid.EndStepEvent.__init__ ArgSpec(args=['self', 'epoch_id', 'step_id', 'metrics'], varargs=None, keywords=None, defaults=None) +paddle.fluid.CheckpointConfig.__init__ ArgSpec(args=['self', 'checkpoint_dir', 'max_num_checkpoints', 'epoch_interval', 'step_interval'], varargs=None, keywords=None, defaults=(None, 3, 1, 10)) +paddle.fluid.Inferencer.__init__ ArgSpec(args=['self', 'infer_func', 'param_path', 'place', 'parallel'], varargs=None, keywords=None, defaults=(None, False)) +paddle.fluid.Inferencer.infer ArgSpec(args=['self', 'inputs', 'return_numpy'], varargs=None, keywords=None, defaults=(True,)) +paddle.fluid.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.DistributeTranspiler.create_splited_vars ArgSpec(args=['self', 'source_var', 'block', 'tag'], varargs=None, keywords=None, defaults=None) +paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None) +paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'], varargs=None, keywords=None, defaults=None) +paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True)) +paddle.fluid.InferenceTranspiler.__init__ +paddle.fluid.InferenceTranspiler.fuse_batch_norm ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=None) +paddle.fluid.InferenceTranspiler.fuse_relu_mkldnn ArgSpec(args=['self', 'program'], varargs=None, keywords=None, defaults=None) +paddle.fluid.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0)) +paddle.fluid.release_memory ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.DistributeTranspilerConfig.__init__ +paddle.fluid.ParallelExecutor.__init__ ArgSpec(args=['self', 'use_cuda', 'loss_name', 'main_program', 'share_vars_from', 'exec_strategy', 'build_strategy', 'num_trainers', 'trainer_id'], varargs=None, keywords='kwargs', defaults=(None, None, None, None, None, 1, 0)) +paddle.fluid.ParallelExecutor.bcast_params ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.ParallelExecutor.run ArgSpec(args=['self', 'fetch_list', 'feed', 'feed_dict', 'return_numpy'], varargs=None, keywords=None, defaults=(None, None, True)) +paddle.fluid.ExecutionStrategy.__init__ __init__(self: paddle.fluid.core.ExecutionStrategy) -> None +paddle.fluid.BuildStrategy.GradientScaleStrategy.__init__ __init__(self: paddle.fluid.core.GradientScaleStrategy, arg0: int) -> None +paddle.fluid.BuildStrategy.ReduceStrategy.__init__ __init__(self: paddle.fluid.core.ReduceStrategy, arg0: int) -> None +paddle.fluid.BuildStrategy.__init__ __init__(self: paddle.fluid.core.BuildStrategy) -> None +paddle.fluid.create_lod_tensor ArgSpec(args=['data', 'recursive_seq_lens', 'place'], varargs=None, keywords=None, defaults=None) +paddle.fluid.create_random_int_lodtensor ArgSpec(args=['recursive_seq_lens', 'base_shape', 'place', 'low', 'high'], varargs=None, keywords=None, defaults=None) +paddle.fluid.io.save_vars ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)) +paddle.fluid.io.save_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.io.save_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.io.load_vars ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)) +paddle.fluid.io.load_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.io.load_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.io.save_inference_model ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.io.load_inference_model ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.io.get_inference_program ArgSpec(args=['target_vars', 'main_program'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.initializer.ConstantInitializer.__init__ ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False)) +paddle.fluid.initializer.UniformInitializer.__init__ ArgSpec(args=['self', 'low', 'high', 'seed'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0)) +paddle.fluid.initializer.NormalInitializer.__init__ ArgSpec(args=['self', 'loc', 'scale', 'seed'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0)) +paddle.fluid.initializer.XavierInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'fan_out', 'seed'], varargs=None, keywords=None, defaults=(True, None, None, 0)) +paddle.fluid.initializer.BilinearInitializer.__init__ ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.initializer.MSRAInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'seed'], varargs=None, keywords=None, defaults=(True, None, 0)) +paddle.fluid.initializer.force_init_on_cpu ArgSpec(args=[], varargs=None, keywords=None, defaults=None) +paddle.fluid.initializer.init_on_cpu ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'use_mkldnn', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, False, None, False, None)) +paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')) +paddle.fluid.layers.dynamic_lstm ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)) +paddle.fluid.layers.dynamic_lstmp ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None)) +paddle.fluid.layers.dynamic_gru ArgSpec(args=['input', 'size', 'param_attr', 'bias_attr', 'is_reverse', 'gate_activation', 'candidate_activation', 'h_0'], varargs=None, keywords=None, defaults=(None, None, False, 'sigmoid', 'tanh', None)) +paddle.fluid.layers.gru_unit ArgSpec(args=['input', 'hidden', 'size', 'param_attr', 'bias_attr', 'activation', 'gate_activation'], varargs=None, keywords=None, defaults=(None, None, 'tanh', 'sigmoid')) +paddle.fluid.layers.linear_chain_crf ArgSpec(args=['input', 'label', 'param_attr'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.crf_decoding ArgSpec(args=['input', 'param_attr', 'label'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.cos_sim ArgSpec(args=['X', 'Y'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.cross_entropy ArgSpec(args=['input', 'label', 'soft_label'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.layers.square_error_cost ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.chunk_eval ArgSpec(args=['input', 'label', 'chunk_scheme', 'num_chunk_types', 'excluded_chunk_types'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(3, 1, None, None, None, None)) +paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, False, None, None)) +paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, False, None, None)) +paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn'], varargs=None, keywords=None, defaults=(None, None, True)) +paddle.fluid.layers.softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(None, None, True, None)) +paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'use_mkldnn', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, False, None)) +paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'use_mkldnn', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, False, None)) +paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'use_mkldnn', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, False, None, None, None, False, False)) +paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)) +paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)) +paddle.fluid.layers.sequence_expand ArgSpec(args=['x', 'y', 'ref_level', 'name'], varargs=None, keywords=None, defaults=(-1, None)) +paddle.fluid.layers.lstm_unit ArgSpec(args=['x_t', 'hidden_t_prev', 'cell_t_prev', 'forget_bias', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(0.0, None, None, None)) +paddle.fluid.layers.reduce_sum ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)) +paddle.fluid.layers.reduce_mean ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)) +paddle.fluid.layers.reduce_max ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)) +paddle.fluid.layers.reduce_min ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)) +paddle.fluid.layers.reduce_prod ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)) +paddle.fluid.layers.sequence_first_step ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.sequence_last_step ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.dropout ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name'], varargs=None, keywords=None, defaults=(False, None, None)) +paddle.fluid.layers.split ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)) +paddle.fluid.layers.ctc_greedy_decoder ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.edit_distance ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None)) +paddle.fluid.layers.l2_normalize ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)) +paddle.fluid.layers.matmul ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'name'], varargs=None, keywords=None, defaults=(False, False, None)) +paddle.fluid.layers.topk ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_times'], varargs=None, keywords=None, defaults=(0, False)) +paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None)) +paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples'], varargs=None, keywords=None, defaults=(None, None, None, None)) +paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None)) +paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.layer_norm ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None)) +paddle.fluid.layers.softmax_with_cross_entropy ArgSpec(args=['logits', 'label', 'soft_label'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.layers.smooth_l1 ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.layers.one_hot ArgSpec(args=['input', 'depth'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.autoincreased_step_counter ArgSpec(args=['counter_name', 'begin', 'step'], varargs=None, keywords=None, defaults=(None, 1, 1)) +paddle.fluid.layers.reshape ArgSpec(args=['x', 'shape', 'actual_shape', 'act', 'inplace', 'name'], varargs=None, keywords=None, defaults=(None, None, True, None)) +paddle.fluid.layers.lod_reset ArgSpec(args=['x', 'y', 'target_lod'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.layers.lrn ArgSpec(args=['input', 'n', 'k', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(5, 1.0, 0.0001, 0.75, None)) +paddle.fluid.layers.pad ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)) +paddle.fluid.layers.label_smooth ArgSpec(args=['label', 'prior_dist', 'epsilon', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 0.1, 'float32', None)) +paddle.fluid.layers.roi_pool ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)) +paddle.fluid.layers.dice_loss ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,)) +paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR')) +paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',)) +paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.random_crop ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.mean_iou ArgSpec(args=['input', 'label', 'num_classes'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.relu ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.log ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)) +paddle.fluid.layers.BlockGuardServ.__init__ ArgSpec(args=['self', 'server'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.ListenAndServ.__init__ ArgSpec(args=['self', 'endpoint', 'inputs', 'fan_in', 'optimizer_mode'], varargs=None, keywords=None, defaults=(1, True)) +paddle.fluid.layers.ListenAndServ.complete_op ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.ListenAndServ.do ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.ListenAndServ.get_params_and_grads ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.ListenAndServ.parent_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.Send ArgSpec(args=['endpoints', 'send_vars', 'sync'], varargs=None, keywords=None, defaults=(True,)) +paddle.fluid.layers.Recv ArgSpec(args=['endpoints', 'get_vars', 'sync'], varargs=None, keywords=None, defaults=(True,)) +paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True)) +paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, None, 1, True)) +paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.shuffle ArgSpec(args=['reader', 'buffer_size'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.batch ArgSpec(args=['reader', 'batch_size'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.double_buffer ArgSpec(args=['reader', 'place', 'name'], varargs=None, keywords=None, defaults=(None, None)) +paddle.fluid.layers.random_data_generator ArgSpec(args=['low', 'high', 'shapes', 'lod_levels', 'for_parallel'], varargs=None, keywords=None, defaults=(True,)) +paddle.fluid.layers.py_reader ArgSpec(args=['capacity', 'shapes', 'dtypes', 'lod_levels'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.Preprocessor.__init__ ArgSpec(args=['self', 'reader', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.Preprocessor.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.layers.Preprocessor.inputs ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.Preprocessor.is_completed ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.Preprocessor.outputs ArgSpec(args=['self'], varargs='outs', keywords=None, defaults=None) +paddle.fluid.layers.load ArgSpec(args=['out', 'file_path', 'load_as_fp16'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.create_tensor ArgSpec(args=['dtype', 'name', 'persistable'], varargs=None, keywords=None, defaults=(None, False)) +paddle.fluid.layers.create_parameter ArgSpec(args=['shape', 'dtype', 'name', 'attr', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(None, None, False, None)) +paddle.fluid.layers.create_global_var ArgSpec(args=['shape', 'value', 'dtype', 'persistable', 'force_cpu', 'name'], varargs=None, keywords=None, defaults=(False, False, None)) +paddle.fluid.layers.cast ArgSpec(args=['x', 'dtype'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.concat ArgSpec(args=['input', 'axis', 'name'], varargs=None, keywords=None, defaults=(0, None)) +paddle.fluid.layers.sums ArgSpec(args=['input', 'out'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.assign ArgSpec(args=['input', 'output'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.fill_constant_batch_size_like ArgSpec(args=['input', 'shape', 'dtype', 'value', 'input_dim_idx', 'output_dim_idx'], varargs=None, keywords=None, defaults=(0, 0)) +paddle.fluid.layers.fill_constant ArgSpec(args=['shape', 'dtype', 'value', 'force_cpu', 'out'], varargs=None, keywords=None, defaults=(False, None)) +paddle.fluid.layers.argmin ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)) +paddle.fluid.layers.argmax ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)) +paddle.fluid.layers.argsort ArgSpec(args=['input', 'axis', 'name'], varargs=None, keywords=None, defaults=(-1, None)) +paddle.fluid.layers.ones ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.layers.zeros ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.layers.reverse ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.split_lod_tensor ArgSpec(args=['input', 'mask', 'level'], varargs=None, keywords=None, defaults=(0,)) +paddle.fluid.layers.merge_lod_tensor ArgSpec(args=['in_true', 'in_false', 'x', 'mask', 'level'], varargs=None, keywords=None, defaults=(0,)) +paddle.fluid.layers.BlockGuard.__init__ ArgSpec(args=['self', 'main_program'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.BlockGuardWithCompletion.__init__ ArgSpec(args=['self', 'rnn'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.WhileGuard.__init__ ArgSpec(args=['self', 'while_op'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.While.__init__ ArgSpec(args=['self', 'cond', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.While.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.While.complete ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.Switch.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.Switch.case ArgSpec(args=['self', 'condition'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.Switch.default ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.lod_rank_table ArgSpec(args=['x', 'level'], varargs=None, keywords=None, defaults=(0,)) +paddle.fluid.layers.max_sequence_len ArgSpec(args=['rank_table'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.lod_tensor_to_array ArgSpec(args=['x', 'table'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.array_to_lod_tensor ArgSpec(args=['x', 'table'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.increment ArgSpec(args=['x', 'value', 'in_place'], varargs=None, keywords=None, defaults=(1.0, True)) +paddle.fluid.layers.array_write ArgSpec(args=['x', 'i', 'array'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.create_array ArgSpec(args=['dtype'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.less_than ArgSpec(args=['x', 'y', 'force_cpu', 'cond'], varargs=None, keywords='ignored', defaults=(None, None)) +paddle.fluid.layers.equal ArgSpec(args=['x', 'y', 'cond'], varargs=None, keywords='ignored', defaults=(None,)) +paddle.fluid.layers.array_read ArgSpec(args=['array', 'i'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.shrink_memory ArgSpec(args=['x', 'i', 'table'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.array_length ArgSpec(args=['array'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.IfElse.__init__ ArgSpec(args=['self', 'cond', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.IfElse.false_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.IfElse.input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.IfElse.output ArgSpec(args=['self'], varargs='outs', keywords=None, defaults=None) +paddle.fluid.layers.IfElse.parent_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.IfElse.true_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.DynamicRNN.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.DynamicRNN.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.layers.DynamicRNN.memory ArgSpec(args=['self', 'init', 'shape', 'value', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, False, 'float32')) +paddle.fluid.layers.DynamicRNN.output ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None) +paddle.fluid.layers.DynamicRNN.static_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.DynamicRNN.step_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.DynamicRNN.update_memory ArgSpec(args=['self', 'ex_mem', 'new_mem'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.ConditionalBlock.__init__ ArgSpec(args=['self', 'inputs', 'is_scalar_condition', 'name'], varargs=None, keywords=None, defaults=(False, None)) +paddle.fluid.layers.ConditionalBlock.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.ConditionalBlock.complete ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.StaticRNN.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.StaticRNN.complete_op ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.StaticRNN.memory ArgSpec(args=['self', 'init', 'shape', 'batch_ref', 'init_value', 'init_batch_dim_idx', 'ref_batch_dim_idx'], varargs=None, keywords=None, defaults=(None, None, None, 0.0, 0, 1)) +paddle.fluid.layers.StaticRNN.output ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None) +paddle.fluid.layers.StaticRNN.parent_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.StaticRNN.step ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.StaticRNN.step_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.StaticRNN.step_output ArgSpec(args=['self', 'o'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.StaticRNN.update_memory ArgSpec(args=['self', 'mem', 'var'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.reorder_lod_tensor_by_rank ArgSpec(args=['x', 'rank_table'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.ParallelDo.__init__ ArgSpec(args=['self', 'places', 'use_nccl', 'name'], varargs=None, keywords=None, defaults=(False, None)) +paddle.fluid.layers.ParallelDo.complete_op ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.ParallelDo.do ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.ParallelDo.get_parameters ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.ParallelDo.parent_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.ParallelDo.read_input ArgSpec(args=['self', 'var'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.ParallelDo.write_output ArgSpec(args=['self', 'var'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.Print ArgSpec(args=['input', 'first_n', 'message', 'summarize', 'print_tensor_name', 'print_tensor_type', 'print_tensor_shape', 'print_tensor_lod', 'print_phase'], varargs=None, keywords=None, defaults=(-1, None, -1, True, True, True, True, 'both')) +paddle.fluid.layers.is_empty ArgSpec(args=['x', 'cond'], varargs=None, keywords='ignored', defaults=(None,)) +paddle.fluid.layers.mean ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.scale ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.elementwise_add ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.elementwise_div ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.elementwise_sub ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.elementwise_mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.elementwise_max ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.elementwise_min ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.elementwise_pow ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.clip ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.clip_by_norm ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.logical_and ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.logical_or ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.logical_xor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.gaussian_random ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.scatter ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.sum ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.slice ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.polygon_box_transform ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.shape ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.iou_similarity ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.maxout ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.sigmoid ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.logsigmoid ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.exp ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.tanh ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.tanh_shrink ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.softshrink ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.sqrt ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.abs ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.ceil ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.floor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.cos ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.sin ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.round ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.reciprocal ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.square ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.softplus ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.softsign ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.brelu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.leaky_relu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.soft_relu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.elu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.relu6 ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.pow ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.stanh ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.hard_sigmoid ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.swish ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.uniform_random ArgSpec(args=['shape', 'dtype', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=(None, None, None, None)) +paddle.fluid.layers.hard_shrink ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.cumsum ArgSpec(args=['x', 'axis', 'exclusive', 'reverse'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.layers.thresholded_relu ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.layers.prior_box ArgSpec(args=['input', 'image', 'min_sizes', 'max_sizes', 'aspect_ratios', 'variance', 'flip', 'clip', 'steps', 'offset', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, [1.0], [0.1, 0.1, 0.2, 0.2], False, False, [0.0, 0.0], 0.5, None, False)) +paddle.fluid.layers.multi_box_head ArgSpec(args=['inputs', 'image', 'base_size', 'num_classes', 'aspect_ratios', 'min_ratio', 'max_ratio', 'min_sizes', 'max_sizes', 'steps', 'step_w', 'step_h', 'offset', 'variance', 'flip', 'clip', 'kernel_size', 'pad', 'stride', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, 0.5, [0.1, 0.1, 0.2, 0.2], True, False, 1, 0, 1, None, False)) +paddle.fluid.layers.bipartite_match ArgSpec(args=['dist_matrix', 'match_type', 'dist_threshold', 'name'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.layers.target_assign ArgSpec(args=['input', 'matched_indices', 'negative_indices', 'mismatch_value', 'name'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.layers.detection_output ArgSpec(args=['loc', 'scores', 'prior_box', 'prior_box_var', 'background_label', 'nms_threshold', 'nms_top_k', 'keep_top_k', 'score_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0, 0.3, 400, 200, 0.01, 1.0)) +paddle.fluid.layers.ssd_loss ArgSpec(args=['location', 'confidence', 'gt_box', 'gt_label', 'prior_box', 'prior_box_var', 'background_label', 'overlap_threshold', 'neg_pos_ratio', 'neg_overlap', 'loc_loss_weight', 'conf_loss_weight', 'match_type', 'mining_type', 'normalize', 'sample_size'], varargs=None, keywords=None, defaults=(None, 0, 0.5, 3.0, 0.5, 1.0, 1.0, 'per_prediction', 'max_negative', True, None)) +paddle.fluid.layers.detection_map ArgSpec(args=['detect_res', 'label', 'class_num', 'background_label', 'overlap_threshold', 'evaluate_difficult', 'has_state', 'input_states', 'out_states', 'ap_version'], varargs=None, keywords=None, defaults=(0, 0.3, True, None, None, None, 'integral')) +paddle.fluid.layers.rpn_target_assign ArgSpec(args=['loc', 'scores', 'anchor_box', 'gt_box', 'rpn_batch_size_per_im', 'fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap'], varargs=None, keywords=None, defaults=(256, 0.25, 0.7, 0.3)) +paddle.fluid.layers.anchor_generator ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None)) +paddle.fluid.layers.box_coder ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) +paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)) +paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk'], varargs=None, keywords=None, defaults=('ROC', 200, 1)) +paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.layers.natural_exp_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.layers.inverse_time_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.layers.polynomial_decay ArgSpec(args=['learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False)) +paddle.fluid.layers.piecewise_decay ArgSpec(args=['boundaries', 'values'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.noam_decay ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.append_LARS ArgSpec(args=['params_grads', 'learning_rate', 'weight_decay'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.transpiler.DistributeTranspiler.create_splited_vars ArgSpec(args=['self', 'source_var', 'block', 'tag'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True)) +paddle.fluid.transpiler.InferenceTranspiler.__init__ +paddle.fluid.transpiler.InferenceTranspiler.fuse_batch_norm ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.InferenceTranspiler.fuse_relu_mkldnn ArgSpec(args=['self', 'program'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.transpiler.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0)) +paddle.fluid.transpiler.release_memory ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.transpiler.HashName.__init__ ArgSpec(args=['self', 'pserver_endpoints'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.HashName.dispatch ArgSpec(args=['self', 'varlist'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.HashName.reset ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.RoundRobin.__init__ ArgSpec(args=['self', 'pserver_endpoints'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.RoundRobin.dispatch ArgSpec(args=['self', 'varlist'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.RoundRobin.reset ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.DistributeTranspilerConfig.__init__ +paddle.fluid.nets.simple_img_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn', 'use_mkldnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True, False)) +paddle.fluid.nets.sequence_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max')) +paddle.fluid.nets.glu ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,)) +paddle.fluid.nets.scaled_dot_product_attention ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0)) +paddle.fluid.optimizer.SGDOptimizer.__init__ ArgSpec(args=['self', 'learning_rate'], varargs=None, keywords='kwargs', defaults=None) +paddle.fluid.optimizer.SGDOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.optimizer.MomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'use_nesterov'], varargs=None, keywords='kwargs', defaults=(False,)) +paddle.fluid.optimizer.MomentumOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.optimizer.AdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon'], varargs=None, keywords='kwargs', defaults=(1e-06,)) +paddle.fluid.optimizer.AdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.optimizer.AdamOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon'], varargs=None, keywords='kwargs', defaults=(0.001, 0.9, 0.999, 1e-08)) +paddle.fluid.optimizer.AdamOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.optimizer.AdamaxOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon'], varargs=None, keywords='kwargs', defaults=(0.001, 0.9, 0.999, 1e-08)) +paddle.fluid.optimizer.AdamaxOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.optimizer.DecayedAdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'decay', 'epsilon'], varargs=None, keywords='kwargs', defaults=(0.95, 1e-06)) +paddle.fluid.optimizer.DecayedAdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.optimizer.FtrlOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'l1', 'l2', 'lr_power'], varargs=None, keywords='kwargs', defaults=(0.0, 0.0, -0.5)) +paddle.fluid.optimizer.FtrlOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.optimizer.RMSPropOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'rho', 'epsilon', 'momentum'], varargs=None, keywords='kwargs', defaults=(0.95, 1e-06, 0.0)) +paddle.fluid.optimizer.RMSPropOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.optimizer.AdadeltaOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon', 'rho'], varargs=None, keywords='kwargs', defaults=(1e-06, 0.95)) +paddle.fluid.optimizer.AdadeltaOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.optimizer.ModelAverage.__init__ ArgSpec(args=['self', 'average_window_rate', 'min_average_window', 'max_average_window'], varargs=None, keywords='kwargs', defaults=(10000, 10000)) +paddle.fluid.optimizer.ModelAverage.apply ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.optimizer.ModelAverage.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.optimizer.ModelAverage.restore ArgSpec(args=['self', 'executor'], varargs=None, keywords=None, defaults=None) +paddle.fluid.backward.append_backward ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None)) +paddle.fluid.regularizer.L1DecayRegularizer.__init__ ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)) +paddle.fluid.regularizer.L2DecayRegularizer.__init__ ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)) +paddle.fluid.LoDTensor.__init__ 1. __init__(self: paddle.fluid.core.LoDTensor, arg0: List[List[int]]) -> None 2. __init__(self: paddle.fluid.core.LoDTensor) -> None +paddle.fluid.LoDTensor.has_valid_recursive_sequence_lengths has_valid_recursive_sequence_lengths(self: paddle.fluid.core.LoDTensor) -> bool +paddle.fluid.LoDTensor.lod lod(self: paddle.fluid.core.LoDTensor) -> List[List[int]] +paddle.fluid.LoDTensor.recursive_sequence_lengths recursive_sequence_lengths(self: paddle.fluid.core.LoDTensor) -> List[List[int]] +paddle.fluid.LoDTensor.set 1. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float32], arg1: paddle::platform::CPUPlace) -> None 2. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int32], arg1: paddle::platform::CPUPlace) -> None 3. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float64], arg1: paddle::platform::CPUPlace) -> None 4. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int64], arg1: paddle::platform::CPUPlace) -> None 5. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[bool], arg1: paddle::platform::CPUPlace) -> None 6. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint16], arg1: paddle::platform::CPUPlace) -> None 7. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint8], arg1: paddle::platform::CPUPlace) -> None 8. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float32], arg1: paddle::platform::CUDAPlace) -> None 9. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int32], arg1: paddle::platform::CUDAPlace) -> None 10. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float64], arg1: paddle::platform::CUDAPlace) -> None 11. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int64], arg1: paddle::platform::CUDAPlace) -> None 12. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[bool], arg1: paddle::platform::CUDAPlace) -> None 13. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint16], arg1: paddle::platform::CUDAPlace) -> None 14. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint8], arg1: paddle::platform::CUDAPlace) -> None 15. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float32], arg1: paddle::platform::CUDAPinnedPlace) -> None 16. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int32], arg1: paddle::platform::CUDAPinnedPlace) -> None 17. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float64], arg1: paddle::platform::CUDAPinnedPlace) -> None 18. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int64], arg1: paddle::platform::CUDAPinnedPlace) -> None 19. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[bool], arg1: paddle::platform::CUDAPinnedPlace) -> None 20. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint16], arg1: paddle::platform::CUDAPinnedPlace) -> None 21. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint8], arg1: paddle::platform::CUDAPinnedPlace) -> None +paddle.fluid.LoDTensor.set_lod set_lod(self: paddle.fluid.core.LoDTensor, arg0: List[List[int]]) -> None +paddle.fluid.LoDTensor.set_recursive_sequence_lengths set_recursive_sequence_lengths(self: paddle.fluid.core.LoDTensor, arg0: List[List[int]]) -> None +paddle.fluid.LoDTensor.shape shape(self: paddle.fluid.core.Tensor) -> List[int] +paddle.fluid.LoDTensorArray.__init__ __init__(self: paddle.fluid.core.LoDTensorArray) -> None +paddle.fluid.LoDTensorArray.append append(self: paddle.fluid.core.LoDTensorArray, arg0: paddle.fluid.core.LoDTensor) -> None +paddle.fluid.CPUPlace.__init__ __init__(self: paddle.fluid.core.CPUPlace) -> None +paddle.fluid.CUDAPlace.__init__ __init__(self: paddle.fluid.core.CUDAPlace, arg0: int) -> None +paddle.fluid.CUDAPinnedPlace.__init__ __init__(self: paddle.fluid.core.CUDAPinnedPlace) -> None +paddle.fluid.ParamAttr.__init__ ArgSpec(args=['self', 'name', 'initializer', 'learning_rate', 'regularizer', 'trainable', 'gradient_clip', 'do_model_average'], varargs=None, keywords=None, defaults=(None, None, 1.0, None, True, None, False)) +paddle.fluid.WeightNormParamAttr.__init__ ArgSpec(args=['self', 'dim'], varargs=None, keywords='kwargs', defaults=(None,)) +paddle.fluid.DataFeeder.__init__ ArgSpec(args=['self', 'feed_list', 'place', 'program'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.DataFeeder.decorate_reader ArgSpec(args=['self', 'reader', 'multi_devices', 'num_places', 'drop_last'], varargs=None, keywords=None, defaults=(None, True)) +paddle.fluid.DataFeeder.feed ArgSpec(args=['self', 'iterable'], varargs=None, keywords=None, defaults=None) +paddle.fluid.DataFeeder.feed_parallel ArgSpec(args=['self', 'iterable', 'num_places'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.clip.ErrorClipByValue.__init__ ArgSpec(args=['self', 'max', 'min'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.clip.GradientClipByValue.__init__ ArgSpec(args=['self', 'max', 'min'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.clip.GradientClipByNorm.__init__ ArgSpec(args=['self', 'clip_norm'], varargs=None, keywords=None, defaults=None) +paddle.fluid.clip.GradientClipByGlobalNorm.__init__ ArgSpec(args=['self', 'clip_norm', 'group_name'], varargs=None, keywords=None, defaults=('default_group',)) +paddle.fluid.profiler.cuda_profiler ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.profiler.reset_profiler ArgSpec(args=[], varargs=None, keywords=None, defaults=None) +paddle.fluid.profiler.profiler ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.profiler.start_profiler ArgSpec(args=['state'], varargs=None, keywords=None, defaults=None) +paddle.fluid.profiler.stop_profiler ArgSpec(args=['sorted_key', 'profile_path'], varargs=None, keywords=None, defaults=(None, '/tmp/profile')) +paddle.fluid.unique_name.generate ArgSpec(args=['key'], varargs=None, keywords=None, defaults=None) +paddle.fluid.unique_name.switch ArgSpec(args=['new_generator'], varargs=None, keywords=None, defaults=(None,)) +paddle.fluid.unique_name.guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) +paddle.fluid.recordio_writer.convert_reader_to_recordio_file ArgSpec(args=['filename', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None)) +paddle.fluid.recordio_writer.convert_reader_to_recordio_files ArgSpec(args=['filename', 'batch_per_file', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None)) +paddle.fluid.Scope.__init__ __init__(self: paddle.fluid.core.Scope) -> None +paddle.fluid.Scope.drop_kids drop_kids(self: paddle.fluid.core.Scope) -> None +paddle.fluid.Scope.find_var find_var(self: paddle.fluid.core.Scope, arg0: unicode) -> paddle.fluid.core.Variable +paddle.fluid.Scope.new_scope new_scope(self: paddle.fluid.core.Scope) -> paddle.fluid.core.Scope +paddle.fluid.Scope.var var(self: paddle.fluid.core.Scope, arg0: unicode) -> paddle.fluid.core.Variable diff --git a/paddle/scripts/paddle_build.sh b/paddle/scripts/paddle_build.sh index 4bdd86990f82be96085dca640cd52ffb843b2c32..c2f403e6bd2275e322f87ec13dd986c03fb3aff7 100755 --- a/paddle/scripts/paddle_build.sh +++ b/paddle/scripts/paddle_build.sh @@ -19,6 +19,8 @@ # Utils #================================================= +set -ex + function print_usage() { echo -e "\n${RED}Usage${NONE}: ${BOLD}${SCRIPT_NAME}${NONE} [OPTION]" @@ -37,6 +39,7 @@ function print_usage() { ${BLUE}fluid_inference_lib${NONE}: deploy fluid inference library ${BLUE}check_style${NONE}: run code style check ${BLUE}cicheck${NONE}: run CI tasks + ${BLUE}assert_api_not_changed${NONE}: check api compability " } @@ -326,11 +329,23 @@ function assert_api_not_changed() { virtualenv .env source .env/bin/activate pip install ${PADDLE_ROOT}/build/python/dist/*whl - curl ${PADDLE_API_SPEC_URL:-https://raw.githubusercontent.com/PaddlePaddle/FluidAPISpec/master/API.spec} \ - > origin.spec python ${PADDLE_ROOT}/tools/print_signatures.py paddle.fluid > new.spec - python ${PADDLE_ROOT}/tools/diff_api.py origin.spec new.spec + python ${PADDLE_ROOT}/tools/diff_api.py ${PADDLE_ROOT}/paddle/fluid/API.spec new.spec deactivate + + API_CHANGE=`git diff --name-only HEAD^ | grep "paddle/fluid/API.spec"` + echo "checking API.spec change..." + echo "${GIT_PR_ID} , ${API_CHANGE}" + if [ ${API_CHANGE} ] && [ "${GIT_PR_ID}" != "" ]; then + # TODO: curl -H 'Authorization: token ${TOKEN}' + APPROVALS=`curl -H "Authorization: token ${GITHUB_API_TOKEN}" https://api.github.com/repos/PaddlePaddle/Paddle/pulls/${GIT_PR_ID}/reviews | \ + python ${PADDLE_ROOT}/tools/check_pr_approval.py 2 7845005 2887803 728699 13348433` + echo "current pr ${GIT_PR_ID} got approvals: ${APPROVALS}" + if [ "${APPROVALS}" == "FALSE" ]; then + echo "You must have at least 2 approvals for the api change!" + exit 1 + fi + fi } @@ -537,7 +552,6 @@ EOF } function main() { - set -e local CMD=$1 init case $CMD in diff --git a/tools/check_pr_approval.py b/tools/check_pr_approval.py new file mode 100644 index 0000000000000000000000000000000000000000..937b0be7562fab93157c16b942631f0a580dfc68 --- /dev/null +++ b/tools/check_pr_approval.py @@ -0,0 +1,49 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +import sys +import json + + +def check_approval(count, required_reviewers): + json_buff = "" + for line in sys.stdin: + json_buff = "".join([json_buff, line]) + json_resp = json.loads(json_buff) + approves = 0 + approved_user_ids = [] + for review in json_resp: + if review["state"] == "APPROVED": + approves += 1 + approved_user_ids.append(review["user"]["id"]) + + # convert to int + required_reviewers_int = set() + for rr in required_reviewers: + required_reviewers_int.add(int(rr)) + + if len(set(approved_user_ids) & required_reviewers_int) >= count: + print("TRUE") + else: + print("FALSE") + + +if __name__ == "__main__": + if len(sys.argv) > 1 and sys.argv[1].isdigit(): + check_approval(int(sys.argv[1]), sys.argv[2:]) + else: + print( + "Usage: python check_pr_approval.py [count] [required reviewer id] ..." + )