Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f874e02b
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f874e02b
编写于
3月 02, 2021
作者:
S
sandyhouse
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update optimizer
上级
d2c81529
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
212 addition
and
60 deletion
+212
-60
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+24
-7
python/paddle/fluid/device_worker.py
python/paddle/fluid/device_worker.py
+2
-0
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+186
-53
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
f874e02b
...
...
@@ -31,6 +31,8 @@ __all__ = ["ShardingOptimizer"]
class
ShardingOptimizer
(
MetaOptimizerBase
):
"""Sharding Optimizer."""
def
__init__
(
self
,
optimizer
):
super
(
ShardingOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
...
...
@@ -77,6 +79,7 @@ class ShardingOptimizer(MetaOptimizerBase):
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""Implementation of minimize."""
# TODO: (JZ-LIANG) support multiple comm in future
# self._nrings = self.user_defined_strategy.nccl_comm_num
self
.
_nrings_sharding
=
1
...
...
@@ -91,12 +94,15 @@ class ShardingOptimizer(MetaOptimizerBase):
self
.
user_defined_strategy
.
sharding_configs
[
"parallelism"
])
self
.
use_pipeline
=
self
.
user_defined_strategy
.
sharding_configs
[
"use_pipeline"
]
self
.
acc_steps
=
self
.
user_defined_strategy
.
sharding_configs
[
"acc_steps"
]
if
self
.
inner_opt
is
None
:
raise
ValueError
(
"self.inner_opt of ShardingOptimizer should not be None."
)
if
self
.
use_pipeline
:
pp_optimizer
=
fluid
.
optimizer
.
PipelineOptimizer
(
self
.
inner_opt
)
pp_optimizer
=
fluid
.
optimizer
.
PipelineOptimizer
(
self
.
inner_opt
,
self
.
acc_steps
)
main_program
=
loss
.
block
.
program
main_program
.
_pipeline_opt
=
dict
()
pp_rank
=
self
.
role_maker
.
_worker_index
()
//
(
...
...
@@ -107,7 +113,7 @@ class ShardingOptimizer(MetaOptimizerBase):
'global_rank'
]
=
self
.
role_maker
.
_worker_index
()
main_program
.
_pipeline_opt
[
'use_sharding'
]
=
True
main_program
.
_pipeline_opt
[
'ring_id'
]
=
2
optimize_ops
,
params_grads
,
program_list
=
pp_optimizer
.
minimize
(
optimize_ops
,
params_grads
,
program_list
,
self
.
pipeline_pair
=
pp_optimizer
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
self
.
pipeline_nodes
=
len
(
program_list
)
else
:
...
...
@@ -349,8 +355,8 @@ class ShardingOptimizer(MetaOptimizerBase):
# check op dependecy
check_broadcast
(
main_block
)
check_allreduce_sum
(
main_block
,
self
.
_shard
,
self
.
sharding_ring_id
,
self
.
dp_ring_id
)
#
check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
#
self.dp_ring_id)
#check_allreduce_sum(main_block, self._shard, self.dp_ring_id)
self
.
_wait
()
return
optimize_ops
,
params_grads
...
...
@@ -403,9 +409,20 @@ class ShardingOptimizer(MetaOptimizerBase):
print
(
"pp_group_endpoints:"
,
self
.
pp_group_endpoints
)
print
(
"pp_rank:"
,
self
.
pp_rank
)
print
(
"pp_ring_id:"
,
self
.
pp_ring_id
)
self
.
_collective_helper
.
_init_communicator
(
self
.
_startup_program
,
self
.
current_endpoint
,
self
.
pp_group_endpoints
,
self
.
pp_rank
,
self
.
pp_ring_id
,
False
)
for
pair
in
self
.
pipeline_pair
:
if
self
.
pp_rank
not
in
pair
:
continue
pp_group_endpoints
=
[
self
.
pp_group_endpoints
[
pair
[
0
]],
self
.
pp_group_endpoints
[
pair
[
1
]],
]
if
pair
[
0
]
<
pair
[
1
]:
start_ring_id
=
self
.
pp_ring_id
+
pair
[
1
]
-
pair
[
0
]
-
1
else
:
start_ring_id
=
self
.
pp_ring_id
+
2
+
pair
[
0
]
-
pair
[
1
]
-
1
pp_rank
=
0
if
self
.
pp_rank
==
pair
[
0
]
else
1
self
.
_collective_helper
.
_init_communicator
(
self
.
_startup_program
,
self
.
current_endpoint
,
pp_group_endpoints
,
pp_rank
,
start_ring_id
,
False
)
startup_block
=
self
.
_startup_program
.
global_block
()
startup_block
.
_sync_with_cpp
()
...
...
python/paddle/fluid/device_worker.py
浏览文件 @
f874e02b
...
...
@@ -413,6 +413,8 @@ class Section(DeviceWorker):
section_param
=
trainer_desc
.
section_param
section_param
.
num_microbatches
=
pipeline_opt
[
"num_microbatches"
]
section_param
.
start_cpu_core_id
=
pipeline_opt
[
"start_cpu_core_id"
]
section_param
.
pipeline_stage
=
pipeline_opt
[
"pipeline_stage"
]
section_param
.
num_pipeline_stages
=
pipeline_opt
[
"num_pipeline_stages"
]
cfg
=
section_param
.
section_config
program
=
pipeline_opt
[
"section_program"
]
cfg
.
program_desc
.
ParseFromString
(
program
[
"program"
].
_get_desc
()
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
f874e02b
...
...
@@ -3788,6 +3788,7 @@ class PipelineOptimizer(object):
self
.
_op_role_var_key
=
op_maker
.
kOpRoleVarAttrName
()
self
.
_op_device_key
=
op_maker
.
kOpDeviceAttrName
()
self
.
_param_device_map
=
None
self
.
_pipeline_pair
=
[]
def
_create_vars
(
self
,
block
,
ori_block
):
# Create vars for block, copied from ori_block
...
...
@@ -4134,6 +4135,7 @@ class PipelineOptimizer(object):
if
not
var_name
in
first_block
.
vars
:
self
.
_create_var
(
first_block
,
main_var
,
var_name
)
dev_index
=
int
(
device
.
split
(
':'
)[
1
])
print
(
"dev_index:"
,
dev_index
)
first_block
.
_insert_op
(
index
=
insert_index
,
type
=
'send_v2'
,
...
...
@@ -4141,9 +4143,11 @@ class PipelineOptimizer(object):
attrs
=
{
self
.
_op_device_key
:
first_dev_spec
,
self
.
_op_role_key
:
self
.
_op_role
.
Forward
,
'use_calc_stream'
:
Tru
e
,
'use_calc_stream'
:
Fals
e
,
'peer'
:
dev_index
,
'ring_id'
:
self
.
ring_id
,
#'ring_id': self.ring_id,
'ring_id'
:
self
.
ring_id
if
dev_index
>
first_dev_index
else
self
.
ring_id
+
2
,
})
# Get the device that that data on
assert
device
in
devices
...
...
@@ -4168,7 +4172,21 @@ class PipelineOptimizer(object):
self
.
_op_role_key
:
self
.
_op_role
.
Forward
,
'peer'
:
first_dev_index
,
'use_calc_stream'
:
True
,
'ring_id'
:
self
.
ring_id
,
#'ring_id': self.ring_id,
'ring_id'
:
self
.
ring_id
if
first_dev_index
<
dev_index
else
self
.
ring_id
+
2
,
})
block
.
_insert_op
(
index
=
index
+
1
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
[
new_var
]},
outputs
=
{
'Out'
:
[
new_var
]},
attrs
=
{
self
.
_op_device_key
:
device
,
self
.
_op_role_key
:
self
.
_op_role
.
Forward
,
#'ring_id': self.ring_id,
'ring_id'
:
self
.
ring_id
if
first_dev_index
>
dev_index
else
self
.
ring_id
+
2
,
})
def
_strip_grad_suffix
(
self
,
name
):
...
...
@@ -4409,30 +4427,91 @@ class PipelineOptimizer(object):
var
=
block
.
vars
[
var_name
]
prev_device_index
=
int
(
prev_device
.
split
(
':'
)[
1
])
cur_device_index
=
int
(
cur_device
.
split
(
':'
)[
1
])
pair
=
(
prev_device_index
,
cur_device_index
)
if
cur_device_index
>
prev_device_index
:
ring_id
=
self
.
ring_id
+
cur_device_index
-
prev_device_index
-
1
else
:
ring_id
=
self
.
ring_id
+
2
+
prev_device_index
-
cur_device_index
-
1
if
pair
not
in
self
.
_pipeline_pair
:
self
.
_pipeline_pair
.
append
(
pair
)
block
.
_insert_op
(
index
=
index
+
extra_index
,
type
=
'send_v2'
,
#type='send_v2',
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
var
},
outputs
=
{
'Out'
:
var
},
attrs
=
{
self
.
_op_device_key
:
prev_device
,
self
.
_op_role_key
:
op_role
,
'use_calc_stream'
:
True
,
'peer'
:
cur_device_index
,
'use_calc_stream'
:
False
,
#'peer': cur_device_index,
#'ring_id': self.ring_id if cur_device_index > prev_device_index else self.ring_id + 2,
'ring_id'
:
ring_id
,
#'ring_id': self.ring_id,
#'root': prev_device_index,
'root'
:
0
,
})
extra_index
+=
1
block
.
_insert_op
(
index
=
index
+
extra_index
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
[
var
]},
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
self
.
_op_device_key
:
cur_device
,
self
.
_op_role_key
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
,
'ring_id'
:
self
.
ring_id
,
#'ring_id': self.ring_id if prev_device_index > cur_device_index else self.ring_id + 2,
})
extra_index
+=
1
fill_shape
=
list
(
var
.
shape
)
fill_shape
[
0
]
=
1
block
.
_insert_op
(
index
=
index
+
extra_index
,
type
=
'recv_v2'
,
#type='recv_v2',
type
=
'fill_constant'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
'
out_shape'
:
var
.
shape
,
'
shape'
:
fill_
shape
,
'dtype'
:
var
.
dtype
,
self
.
_op_device_key
:
cur_device
,
self
.
_op_role_key
:
op_role
,
'use_calc_stream'
:
True
,
'peer'
:
prev_device_index
,
'value'
:
float
(
0.0
),
})
extra_index
+=
1
block
.
_insert_op
(
index
=
index
+
extra_index
,
#type='recv_v2',
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
var
},
outputs
=
{
'Out'
:
var
},
attrs
=
{
#'out_shape': var.shape,
#'dtype': var.dtype,
self
.
_op_device_key
:
cur_device
,
self
.
_op_role_key
:
op_role
,
'use_calc_stream'
:
False
,
#'peer': prev_device_index,
#'root': prev_device_index,
'root'
:
0
,
#'ring_id': self.ring_id,
'ring_id'
:
ring_id
,
#'ring_id': self.ring_id if cur_device_index > prev_device_index else self.ring_id + 2,
#'ring_id': self.ring_id if prev_device_index < cur_device_index else self.ring_id + 2,
})
extra_index
+=
1
block
.
_insert_op
(
index
=
index
+
extra_index
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
[
var
]},
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
self
.
_op_device_key
:
cur_device
,
self
.
_op_role_key
:
op_role
,
'ring_id'
:
self
.
ring_id
,
#'ring_id': self.ring_id if prev_device_index > cur_device_index else self.ring_id + 2,
})
extra_index
+=
1
...
...
@@ -4512,6 +4591,15 @@ class PipelineOptimizer(object):
first_optimize_op_index
=
None
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
list
(
block
.
ops
)))):
# device = op.attr(self._op_device_key)
# remove the cast op of fp16 grad to fp32 grad
if
self
.
_is_optimize_op
(
op
)
and
op
.
type
==
'cast'
:
in_name
=
op
.
input_arg_names
[
0
]
out_name
=
op
.
output_arg_names
[
0
]
if
out_name
.
strip
(
'@GRAD'
)
in
self
.
_param_device_map
:
assert
in_name
.
replace
(
'.cast_fp16'
,
''
)
==
out_name
block
.
_remove_op
(
index
)
continue
if
not
self
.
_is_optimize_op
(
op
)
and
not
first_optimize_op_index
:
first_optimize_op_index
=
index
+
1
if
block
.
ops
[
...
...
@@ -4553,11 +4641,11 @@ class PipelineOptimizer(object):
# a trick to run this op once per mini-batch
self
.
_op_role_key
:
self
.
_op_role
.
Optimize
.
LRSched
,
})
offset
+=
1
#
offset += 1
grad_name
=
op_role_var
[
i
+
1
]
# with _0 suffix
grad_var
=
block
.
vars
[
grad_name
]
# without _0 suffix
grad_var
=
block
.
vars
[
grad_name
]
real_grad_name
=
grad_name
[
0
:
grad_name
.
find
(
'@GRAD'
)]
+
'@GRAD'
'@GRAD'
)]
+
'@GRAD'
# without _0 suffix
real_grad_var
=
block
.
vars
[
real_grad_name
]
# without _0 suffix
# new_grad_var_name = unique_name.generate(grad_name)
...
...
@@ -4567,7 +4655,7 @@ class PipelineOptimizer(object):
# self._rename_arg(op, grad_name, new_grad_var_name)
if
not
'cast_fp16'
in
grad_name
:
block
.
_insert_op
(
index
=
first_optimize_op_index
+
offset
,
index
=
index
+
1
,
type
=
'sum'
,
inputs
=
{
'X'
:
[
grad_var
,
real_grad_var
]},
outputs
=
{
'Out'
:
real_grad_var
},
...
...
@@ -4576,58 +4664,83 @@ class PipelineOptimizer(object):
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
#self._op_role_var_key: op_role_var
})
offset
+=
1
#
offset += 1
else
:
grad_name
=
op_role_var
[
i
+
1
]
# with _0 suffix
grad_var
=
block
.
vars
[
grad_name
]
# without _0 suffix
fp32_grad_var_name
=
param_name
+
core
.
grad_var_suffix
()
grad_var
=
block
.
vars
[
grad_name
]
fp32_grad_var_name
=
param_name
+
core
.
grad_var_suffix
(
)
# without _0 suffix
fp32_grad_var
=
block
.
vars
[
fp32_grad_var_name
]
fp32_grad_var
.
persistable
=
True
cast_grad_var_name
=
unique_name
.
generate
(
fp32_grad_var_name
)
cast_var
=
self
.
_create_var
(
block
,
grad_var
,
cast_grad_var_name
)
cast_var
.
persistable
=
False
real_grad_name
=
grad_name
[
0
:
grad_name
.
find
(
'@GRAD'
)]
+
'@GRAD'
real_grad_var
=
block
.
vars
[
real_grad_name
]
# without _0 suffix
cast_grad_var
=
self
.
_create_var
(
block
,
fp32_grad_var
,
cast_grad_var_name
)
cast_grad_var
.
persistable
=
False
block
.
_insert_op
(
index
=
first_optimize_op_index
+
offset
,
index
=
index
+
1
,
type
=
'cast'
,
inputs
=
{
'X'
:
fp32_
grad_var
},
outputs
=
{
'Out'
:
cast_var
},
inputs
=
{
'X'
:
grad_var
},
outputs
=
{
'Out'
:
cast_
grad_
var
},
attrs
=
{
'in_dtype'
:
fp32_
grad_var
.
dtype
,
'out_dtype'
:
cast_var
.
dtype
,
'in_dtype'
:
grad_var
.
dtype
,
'out_dtype'
:
cast_
grad_
var
.
dtype
,
# self._op_device_key: device,
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
# self._op_role_var_key: op_role_var
})
offset
+=
1
block
.
_insert_op
(
index
=
first_optimize_op_index
+
offset
,
index
=
index
+
2
,
type
=
'sum'
,
inputs
=
{
'X'
:
[
grad_var
,
cast_var
]},
outputs
=
{
'Out'
:
real_grad_var
},
attrs
=
{
# self._op_device_key: device,
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
# self._op_role_var_key: op_role_var
})
offset
+=
1
block
.
_insert_op
(
index
=
first_optimize_op_index
+
offset
,
type
=
'cast'
,
inputs
=
{
'X'
:
real_grad_var
},
inputs
=
{
'X'
:
[
fp32_grad_var
,
cast_grad_var
]},
outputs
=
{
'Out'
:
fp32_grad_var
},
attrs
=
{
'in_dtype'
:
real_grad_var
.
dtype
,
'out_dtype'
:
fp32_grad_var
.
dtype
,
# self._op_device_key: device,
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
# self._op_role_var_key: op_role_var
})
offset
+=
1
#real_grad_name = grad_name[0:grad_name.find(
# '@GRAD')] + '@GRAD'
#real_grad_var = block.vars[
# real_grad_name] # without _0 suffix
#block._insert_op(
# index=first_optimize_op_index + offset,
# type='cast',
# inputs={'X': fp32_grad_var},
# outputs={'Out': cast_var},
# attrs={
# 'in_dtype': fp32_grad_var.dtype,
# 'out_dtype': cast_var.dtype,
# # self._op_device_key: device,
# self._op_role_key: self._op_role.Backward,
# # self._op_role_var_key: op_role_var
# })
#offset += 1
#block._insert_op(
# index=first_optimize_op_index + offset,
# type='sum',
# inputs={'X': [grad_var, cast_var]},
# outputs={'Out': real_grad_var},
# attrs={
# # self._op_device_key: device,
# self._op_role_key: self._op_role.Backward,
# # self._op_role_var_key: op_role_var
# })
#offset += 1
#block._insert_op(
# index=first_optimize_op_index + offset,
# type='cast',
# inputs={'X': real_grad_var},
# outputs={'Out': fp32_grad_var},
# attrs={
# 'in_dtype': real_grad_var.dtype,
# 'out_dtype': fp32_grad_var.dtype,
# # self._op_device_key: device,
# self._op_role_key: self._op_role.Backward,
# # self._op_role_var_key: op_role_var
# })
def
_add_sub_blocks
(
self
,
main_block
,
program_list
):
main_program
=
main_block
.
program
...
...
@@ -4720,12 +4833,14 @@ class PipelineOptimizer(object):
inputs
=
{
'X'
:
write_block
.
var
(
var_name
),
},
attrs
=
{
self
.
_op_device_key
:
write_device
,
'use_calc_stream'
:
Tru
e
,
'use_calc_stream'
:
Fals
e
,
# A trick to make the role LRSched to avoid copy every
# microbatch
self
.
_op_role_key
:
self
.
_op_role
.
LRSched
,
'peer'
:
read_dev_index
,
'ring_id'
:
self
.
ring_id
,
#'ring_id': self.ring_id,
'ring_id'
:
self
.
ring_id
if
read_dev_index
>
write_dev_index
else
self
.
ring_id
+
2
,
})
read_block
.
_insert_op
(
index
=
0
,
...
...
@@ -4735,12 +4850,28 @@ class PipelineOptimizer(object):
'out_shape'
:
read_block
.
var
(
var_name
).
shape
,
'dtype'
:
read_block
.
var
(
var_name
).
dtype
,
self
.
_op_device_key
:
read_device
,
'use_calc_stream'
:
Tru
e
,
'use_calc_stream'
:
Fals
e
,
# A trick to make the role LRSched to avoid copy every
# microbatch
self
.
_op_role_key
:
self
.
_op_role
.
LRSched
,
'peer'
:
write_dev_index
,
'ring_id'
:
self
.
ring_id
,
#'ring_id': self.ring_id,
'ring_id'
:
self
.
ring_id
if
write_dev_index
<
read_dev_index
else
self
.
ring_id
+
2
,
})
read_block
.
_insert_op
(
index
=
1
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
[
read_block
.
var
(
var_name
)]},
outputs
=
{
'Out'
:
[
read_block
.
var
(
var_name
)]},
attrs
=
{
self
.
_op_device_key
:
read_device
,
# A trick to make the role LRSched to avoid copy every
# microbatch
self
.
_op_role_key
:
self
.
_op_role
.
LRSched
,
#'ring_id': self.ring_id,
'ring_id'
:
self
.
ring_id
if
write_dev_index
>
read_dev_index
else
self
.
ring_id
+
2
,
})
def
_is_gradient_clip_op
(
self
,
op
):
...
...
@@ -4809,8 +4940,8 @@ class PipelineOptimizer(object):
program_list
=
self
.
_split_program
(
main_program
,
device_list
)
for
p
in
program_list
:
self
.
_create_vars
(
p
[
"program"
].
block
(
0
),
main_block
)
self
.
_insert_sendrecv_for_data_var
(
main_block
,
program_list
,
startup_program
,
device_list
)
#
self._insert_sendrecv_for_data_var(main_block, program_list,
#
startup_program, device_list)
# Step4: Special Case: process persistable vars that exist in
# multiple sections
...
...
@@ -4824,8 +4955,8 @@ class PipelineOptimizer(object):
place_list
=
[]
for
dev
in
device_list
:
dev_index
=
int
(
dev
.
split
(
":"
)[
1
])
%
8
place_list
.
append
(
core
.
CUDAPlace
(
dev_index
))
dev_index
=
int
(
dev
.
split
(
":"
)[
1
])
place_list
.
append
(
core
.
CUDAPlace
(
dev_index
%
8
))
# Step6: Split startup program
new_startup_program
=
self
.
_split_startup_program
(
startup_program
,
...
...
@@ -4851,6 +4982,8 @@ class PipelineOptimizer(object):
"trainer"
:
"PipelineTrainer"
,
"device_worker"
:
"Section"
,
"inner_parallelism"
:
len
(
device_list
),
"num_pipeline_stages"
:
len
(
device_list
),
"pipeline_stage"
:
local_rank
,
"section_program"
:
program_list
[
local_rank
],
"place"
:
place_list
[
local_rank
],
"place_id"
:
place_id
,
...
...
@@ -4858,7 +4991,7 @@ class PipelineOptimizer(object):
"num_microbatches"
:
self
.
_num_microbatches
,
"start_cpu_core_id"
:
self
.
_start_cpu_core_id
,
}
return
optimize_ops
,
params_grads
,
program_list
return
optimize_ops
,
params_grads
,
program_list
,
self
.
_pipeline_pair
class
RecomputeOptimizer
(
Optimizer
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录