Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f74dff97
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f74dff97
编写于
12月 28, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the activation type in the GRU operator related
上级
18311767
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
60 addition
and
63 deletion
+60
-63
paddle/operators/gru_op.h
paddle/operators/gru_op.h
+12
-7
paddle/operators/math/detail/gru_cpu_kernel.h
paddle/operators/math/detail/gru_cpu_kernel.h
+16
-18
paddle/operators/math/detail/gru_gpu_kernel.h
paddle/operators/math/detail/gru_gpu_kernel.h
+4
-6
paddle/operators/math/detail/gru_kernel.h
paddle/operators/math/detail/gru_kernel.h
+8
-9
paddle/operators/math/gru_compute.cc
paddle/operators/math/gru_compute.cc
+6
-6
paddle/operators/math/gru_compute.cu
paddle/operators/math/gru_compute.cu
+4
-6
paddle/operators/math/gru_compute.h
paddle/operators/math/gru_compute.h
+10
-11
未找到文件。
paddle/operators/gru_op.h
浏览文件 @
f74dff97
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include "paddle/operators/math/detail/activation_functions.h"
#include "paddle/operators/math/gru_compute.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/sequence2batch.h"
...
...
@@ -70,7 +71,7 @@ class GRUKernel : public framework::OpKernel<T> {
}
int
frame_size
=
hidden_dims
[
1
];
math
::
hl_gru_v
alue
<
T
>
gru_value
;
math
::
GRUMetaV
alue
<
T
>
gru_value
;
gru_value
.
gate_weight
=
const_cast
<
T
*>
(
weight_data
);
gru_value
.
state_weight
=
const_cast
<
T
*>
(
weight_data
+
2
*
frame_size
*
frame_size
);
...
...
@@ -102,8 +103,10 @@ class GRUKernel : public framework::OpKernel<T> {
gru_value
.
reset_output_value
=
reset_hidden_prev_t
.
data
<
T
>
();
math
::
GRUUnitFunctor
<
DeviceContext
,
T
>::
compute
(
dev_ctx
,
gru_value
,
frame_size
,
cur_batch_size
,
math
::
ActiveType
(
context
.
Attr
<
std
::
string
>
(
"activation"
)),
math
::
ActiveType
(
context
.
Attr
<
std
::
string
>
(
"gate_activation"
)));
math
::
detail
::
GetActivationType
(
context
.
Attr
<
std
::
string
>
(
"activation"
)),
math
::
detail
::
GetActivationType
(
context
.
Attr
<
std
::
string
>
(
"gate_activation"
)));
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
}
...
...
@@ -170,12 +173,12 @@ class GRUGradKernel : public framework::OpKernel<T> {
batch_hidden_grad
.
set_lod
(
batch_hidden
->
lod
());
to_batch
(
dev_ctx
,
*
hidden_grad
,
batch_hidden_grad
,
false
,
is_reverse
);
math
::
hl_gru_v
alue
<
T
>
gru_value
;
math
::
GRUMetaV
alue
<
T
>
gru_value
;
gru_value
.
gate_weight
=
const_cast
<
T
*>
(
weight_data
);
gru_value
.
state_weight
=
const_cast
<
T
*>
(
weight_data
+
2
*
frame_size
*
frame_size
);
math
::
hl_gru_g
rad
<
T
>
gru_grad
;
math
::
GRUMetaG
rad
<
T
>
gru_grad
;
if
(
weight_grad
)
{
gru_grad
.
gate_weight_grad
=
weight_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
@@ -220,8 +223,10 @@ class GRUGradKernel : public framework::OpKernel<T> {
math
::
GRUUnitGradFunctor
<
DeviceContext
,
T
>::
compute
(
dev_ctx
,
gru_value
,
gru_grad
,
frame_size
,
cur_batch_size
,
math
::
ActiveType
(
context
.
Attr
<
std
::
string
>
(
"activation"
)),
math
::
ActiveType
(
context
.
Attr
<
std
::
string
>
(
"gate_activation"
)));
math
::
detail
::
GetActivationType
(
context
.
Attr
<
std
::
string
>
(
"activation"
)),
math
::
detail
::
GetActivationType
(
context
.
Attr
<
std
::
string
>
(
"gate_activation"
)));
}
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
paddle/operators/math/detail/gru_cpu_kernel.h
浏览文件 @
f74dff97
...
...
@@ -28,7 +28,7 @@ template <class OpResetOutput, typename T>
void
hl_naive_gru_forward_reset_output
(
OpResetOutput
op_reset_output
,
T
*
gate_value
,
T
*
reset_output_value
,
T
*
prev_output_value
,
int
frame_size
,
activation_mode_t
active_gate
)
{
ActivationType
active_gate
)
{
T
r_value_update_gate
;
T
r_value_reset_gate
;
T
r_value_reset_output
;
...
...
@@ -56,7 +56,7 @@ template <class OpFinalOutput, typename T>
void
hl_naive_gru_forward_final_output
(
OpFinalOutput
op_final_output
,
T
*
gate_value
,
T
*
prev_output_value
,
T
*
output_value
,
int
frame_size
,
activation_mode_t
active_node
)
{
ActivationType
active_node
)
{
T
r_value_update_gate
;
T
r_value_frame_state
;
T
r_prev_out
=
0
;
...
...
@@ -83,7 +83,7 @@ template <class OpResetOutput, typename T>
void
hl_avx_gru_forward_reset_output
(
OpResetOutput
op_reset_output
,
T
*
gate_value
,
T
*
reset_output_value
,
T
*
prev_output_value
,
int
frame_size
,
activation_mode_t
active_gate
)
{
ActivationType
active_gate
)
{
#ifdef __AVX__
__m256
r_value_update_gate
;
__m256
r_value_reset_gate
;
...
...
@@ -113,7 +113,7 @@ template <class OpFinalOutput, typename T>
void
hl_avx_gru_forward_final_output
(
OpFinalOutput
op_final_output
,
T
*
gate_value
,
T
*
prev_output_value
,
T
*
output_value
,
int
frame_size
,
activation_mode_t
active_node
)
{
ActivationType
active_node
)
{
#ifdef __AVX__
__m256
r_value_update_gate
;
__m256
r_value_frame_state
;
...
...
@@ -140,9 +140,8 @@ void hl_avx_gru_forward_final_output(OpFinalOutput op_final_output,
template
<
class
OpResetOutput
,
typename
T
>
inline
void
forward_reset_output
(
OpResetOutput
op_reset_output
,
hl_gru_value
<
T
>
value
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_gate
)
{
GRUMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
ActivationType
active_gate
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
if
(
OpResetOutput
::
avx
&&
!
(
frame_size
&
(
8
-
1
))
&&
(
sizeof
(
T
)
==
4
))
{
hl_avx_gru_forward_reset_output
(
...
...
@@ -164,9 +163,8 @@ inline void forward_reset_output(OpResetOutput op_reset_output,
template
<
class
OpFinalOutput
,
typename
T
>
inline
void
forward_final_output
(
OpFinalOutput
op_final_output
,
hl_gru_value
<
T
>
value
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_node
)
{
GRUMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
ActivationType
active_node
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
if
(
OpFinalOutput
::
avx
&&
!
(
frame_size
&
(
8
-
1
))
&&
(
sizeof
(
T
)
==
4
))
{
hl_avx_gru_forward_final_output
(
op_final_output
,
value
.
gate_value
,
...
...
@@ -191,7 +189,7 @@ void hl_naive_gru_backward_state_grad(OpStateGrad op_state_grad, T *gate_value,
T
*
gate_grad
,
T
*
prev_out_value
,
T
*
prev_out_grad
,
T
*
output_grad
,
int
frame_size
,
activation_mode_t
active_node
)
{
ActivationType
active_node
)
{
T
r_update_gate_value
;
T
r_update_gate_grad
;
T
r_frame_state_value
;
...
...
@@ -232,7 +230,7 @@ void hl_naive_gru_backward_reset_grad(OpResetGrad op_reset_grad, T *gate_value,
T
*
gate_grad
,
T
*
prev_out_value
,
T
*
prev_out_grad
,
T
*
reset_output_grad
,
int
frame_size
,
activation_mode_t
active_gate
)
{
ActivationType
active_gate
)
{
T
r_update_gate_value
;
T
r_update_gate_grad
;
T
r_reset_gate_value
;
...
...
@@ -277,7 +275,7 @@ void hl_avx_gru_backward_state_grad(OpStateGrad op_state_grad, T *gate_value,
T
*
gate_grad
,
T
*
prev_out_value
,
T
*
prev_out_grad
,
T
*
output_grad
,
int
frame_size
,
activation_mode_t
active_node
)
{
ActivationType
active_node
)
{
#ifdef __AVX__
__m256
r_update_gate_value
;
__m256
r_update_gate_grad
;
...
...
@@ -320,7 +318,7 @@ void hl_avx_gru_backward_reset_grad(OpResetGrad op_reset_grad, T *gate_value,
T
*
gate_grad
,
T
*
prev_out_value
,
T
*
prev_out_grad
,
T
*
reset_output_grad
,
int
frame_size
,
activation_mode_t
active_gate
)
{
ActivationType
active_gate
)
{
#ifdef __AVX__
__m256
r_update_gate_value
;
__m256
r_update_gate_grad
;
...
...
@@ -364,9 +362,9 @@ void hl_avx_gru_backward_reset_grad(OpResetGrad op_reset_grad, T *gate_value,
template
<
class
OpStateGrad
,
typename
T
>
inline
void
backward_state_grad
(
OpStateGrad
op_state_grad
,
hl_gru_value
<
T
>
value
,
hl_gru_g
rad
<
T
>
grad
,
GRUMetaValue
<
T
>
value
,
GRUMetaG
rad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_node
)
{
ActivationType
active_node
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
if
(
OpStateGrad
::
avx
&&
!
(
frame_size
&
(
8
-
1
))
&&
(
sizeof
(
T
)
==
4
))
{
hl_avx_gru_backward_state_grad
(
...
...
@@ -393,9 +391,9 @@ inline void backward_state_grad(OpStateGrad op_state_grad,
template
<
class
OpResetGrad
,
typename
T
>
inline
void
backward_reset_grad
(
OpResetGrad
op_reset_grad
,
hl_gru_value
<
T
>
value
,
hl_gru_g
rad
<
T
>
grad
,
GRUMetaValue
<
T
>
value
,
GRUMetaG
rad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_gate
)
{
ActivationType
active_gate
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
if
(
OpResetGrad
::
avx
&&
!
(
frame_size
&
(
8
-
1
))
&&
(
sizeof
(
T
)
==
4
))
{
hl_avx_gru_backward_reset_grad
(
...
...
paddle/operators/math/detail/gru_gpu_kernel.h
浏览文件 @
f74dff97
...
...
@@ -19,8 +19,6 @@ limitations under the License. */
#include "paddle/platform/cuda_helper.h"
#include "paddle/platform/device_context.h"
#include <glog/logging.h>
namespace
paddle
{
namespace
operators
{
namespace
math
{
...
...
@@ -35,7 +33,7 @@ __global__ void KeGruForwardResetOutput(OpResetOutput op_reset_output,
T
*
gate_value
,
T
*
reset_output_value
,
T
*
prev_output_value
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_gate
)
{
ActivationType
active_gate
)
{
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
frame_idx
>=
frame_size
)
return
;
...
...
@@ -74,7 +72,7 @@ __global__ void KeGruForwardFinalOutput(OpFinalOutput op_final_output,
T
*
gate_value
,
T
*
prev_output_value
,
T
*
output_value
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_node
)
{
ActivationType
active_node
)
{
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
frame_idx
>=
frame_size
)
return
;
int
batch_idx
=
0
;
...
...
@@ -111,7 +109,7 @@ __global__ void KeGruBackwardStateGrad(OpStateGrad op_state_grad, T *gate_value,
T
*
gate_grad
,
T
*
prev_out_value
,
T
*
prev_out_grad
,
T
*
output_grad
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_node
)
{
ActivationType
active_node
)
{
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
frame_idx
>=
frame_size
)
return
;
int
batch_idx
=
0
;
...
...
@@ -159,7 +157,7 @@ __global__ void KeGruBackwardResetGrad(OpResetGrad op_reset_grad, T *gate_value,
T
*
gate_grad
,
T
*
prev_out_value
,
T
*
prev_out_grad
,
T
*
reset_output_grad
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_gate
)
{
ActivationType
active_gate
)
{
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
frame_idx
>=
frame_size
)
return
;
int
batch_idx
=
0
;
...
...
paddle/operators/math/detail/gru_kernel.h
浏览文件 @
f74dff97
...
...
@@ -30,7 +30,7 @@ class gru_resetOutput {
public:
HOSTDEVICE
void
operator
()(
T
&
value_update_gate
,
T
&
value_reset_gate
,
T
&
prev_out
,
T
&
value_reset_output
,
activation_mode_t
act_gate
)
{
ActivationType
act_gate
)
{
value_update_gate
=
activation
(
value_update_gate
,
act_gate
);
value_reset_gate
=
activation
(
value_reset_gate
,
act_gate
);
value_reset_output
=
prev_out
*
value_reset_gate
;
...
...
@@ -43,7 +43,7 @@ class gru_resetOutput {
HOSTDEVICE
void
operator
()(
__m256
&
value_update_gate
,
__m256
&
value_reset_gate
,
__m256
&
prev_out
,
__m256
&
value_reset_output
,
activation_mode_t
act_gate
)
{
ActivationType
act_gate
)
{
value_update_gate
=
activation
(
value_update_gate
,
act_gate
);
value_reset_gate
=
activation
(
value_reset_gate
,
act_gate
);
value_reset_output
=
_mm256_mul_ps
(
prev_out
,
value_reset_gate
);
...
...
@@ -57,7 +57,7 @@ class gru_finalOutput {
public:
HOSTDEVICE
void
operator
()(
T
&
value_update_gate
,
T
&
value_frame_state
,
T
&
prev_out
,
T
&
value_output
,
activation_mode_t
act_input
)
{
ActivationType
act_input
)
{
value_frame_state
=
activation
(
value_frame_state
,
act_input
);
value_output
=
prev_out
-
(
value_update_gate
*
prev_out
)
+
(
value_update_gate
*
value_frame_state
);
...
...
@@ -69,8 +69,7 @@ class gru_finalOutput {
static
const
bool
avx
=
true
;
HOSTDEVICE
void
operator
()(
__m256
&
value_update_gate
,
__m256
&
value_frame_state
,
__m256
&
prev_out
,
__m256
&
value_output
,
activation_mode_t
act_input
)
{
__m256
&
value_output
,
ActivationType
act_input
)
{
value_frame_state
=
activation
(
value_frame_state
,
act_input
);
value_output
=
_mm256_add_ps
(
_mm256_sub_ps
(
prev_out
,
_mm256_mul_ps
(
value_update_gate
,
prev_out
)),
...
...
@@ -89,7 +88,7 @@ class gru_stateGrad {
HOSTDEVICE
void
operator
()(
T
&
value_update_gate
,
T
&
grad_update_gate
,
T
&
value_frame_state
,
T
&
grad_frame_state
,
T
&
value_prev_out
,
T
&
grad_prev_out
,
T
&
grad_output
,
activation_mode_t
act_input
)
{
T
&
grad_output
,
ActivationType
act_input
)
{
grad_update_gate
=
(
grad_output
*
value_frame_state
);
grad_update_gate
-=
(
grad_output
*
value_prev_out
);
grad_prev_out
-=
(
grad_output
*
value_update_gate
);
...
...
@@ -107,7 +106,7 @@ class gru_stateGrad {
__m256
&
value_frame_state
,
__m256
&
grad_frame_state
,
__m256
&
value_prev_out
,
__m256
&
grad_prev_out
,
__m256
&
grad_output
,
activation_mode_t
act_input
)
{
ActivationType
act_input
)
{
grad_update_gate
=
_mm256_mul_ps
(
grad_output
,
value_frame_state
);
grad_update_gate
=
_mm256_sub_ps
(
grad_update_gate
,
_mm256_mul_ps
(
grad_output
,
value_prev_out
));
...
...
@@ -128,7 +127,7 @@ class gru_resetGrad {
HOSTDEVICE
void
operator
()(
T
&
value_update_gate
,
T
&
grad_update_gate
,
T
&
value_reset_gate
,
T
&
grad_reset_gate
,
T
&
value_prev_out
,
T
&
grad_prev_out
,
T
&
grad_reset_output
,
activation_mode_t
act_gate
)
{
T
&
grad_reset_output
,
ActivationType
act_gate
)
{
grad_reset_gate
=
(
grad_reset_output
*
value_prev_out
);
grad_prev_out
+=
(
grad_reset_output
*
value_reset_gate
);
grad_update_gate
=
...
...
@@ -144,7 +143,7 @@ class gru_resetGrad {
__m256
&
grad_update_gate
,
__m256
&
value_reset_gate
,
__m256
&
grad_reset_gate
,
__m256
&
value_prev_out
,
__m256
&
grad_prev_out
,
__m256
&
grad_reset_output
,
activation_mode_t
act_gate
)
{
ActivationType
act_gate
)
{
grad_reset_gate
=
_mm256_mul_ps
(
grad_reset_output
,
value_prev_out
);
grad_prev_out
=
_mm256_add_ps
(
grad_prev_out
,
_mm256_mul_ps
(
grad_reset_output
,
value_reset_gate
));
...
...
paddle/operators/math/gru_compute.cc
浏览文件 @
f74dff97
...
...
@@ -21,9 +21,9 @@ namespace math {
template
<
typename
T
>
struct
GRUUnitFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
static
void
compute
(
const
platform
::
CPUDeviceContext
&
context
,
hl_gru_v
alue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_node
,
activation_mode_t
active_gate
)
{
GRUMetaV
alue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_gate
)
{
#ifndef __NVCC__
if
(
value
.
prev_out_value
)
{
math
::
gemm
<
platform
::
CPUDeviceContext
,
T
>
(
...
...
@@ -51,10 +51,10 @@ struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
template
<
typename
T
>
struct
GRUUnitGradFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
static
void
compute
(
const
platform
::
CPUDeviceContext
&
context
,
hl_gru_value
<
T
>
value
,
hl_gru_g
rad
<
T
>
grad
,
GRUMetaValue
<
T
>
value
,
GRUMetaG
rad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_node
,
activation_mode_t
active_gate
)
{
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_gate
)
{
#ifndef __NVCC__
detail
::
backward_state_grad
(
detail
::
backward
::
gru_stateGrad
<
T
>
(),
value
,
grad
,
frame_size
,
batch_size
,
active_node
);
...
...
paddle/operators/math/gru_compute.cu
浏览文件 @
f74dff97
...
...
@@ -21,9 +21,8 @@ namespace math {
template
<
typename
T
>
struct
GRUUnitFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
static
void
compute
(
const
platform
::
CUDADeviceContext
&
context
,
hl_gru_value
<
T
>
value
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_node
,
activation_mode_t
active_gate
)
{
GRUMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
ActivationType
active_node
,
ActivationType
active_gate
)
{
auto
stream
=
context
.
stream
();
dim3
threads
;
dim3
grid
;
...
...
@@ -88,10 +87,9 @@ struct GRUUnitFunctor<platform::CUDADeviceContext, T> {
template
<
typename
T
>
struct
GRUUnitGradFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
static
void
compute
(
const
platform
::
CUDADeviceContext
&
context
,
hl_gru_value
<
T
>
value
,
hl_gru_g
rad
<
T
>
grad
,
GRUMetaValue
<
T
>
value
,
GRUMetaG
rad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_node
,
activation_mode_t
active_gate
)
{
ActivationType
active_node
,
ActivationType
active_gate
)
{
auto
stream
=
context
.
stream
();
dim3
threads
;
dim3
grid
;
...
...
paddle/operators/math/gru_compute.h
浏览文件 @
f74dff97
...
...
@@ -11,7 +11,7 @@ limitations under the License. */
#pragma once
#include "paddle/operators/math/
lstm_compute
.h"
#include "paddle/operators/math/
detail/activation_functions
.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/enforce.h"
...
...
@@ -19,9 +19,8 @@ namespace paddle {
namespace
operators
{
namespace
math
{
// TODO(guosheng): refine code style in gru_compute
template
<
typename
T
>
struct
hl_gru_v
alue
{
struct
GRUMetaV
alue
{
T
*
gate_weight
;
T
*
state_weight
;
T
*
gate_value
;
...
...
@@ -31,7 +30,7 @@ struct hl_gru_value {
};
template
<
typename
T
>
struct
hl_gru_g
rad
{
struct
GRUMetaG
rad
{
T
*
gate_weight_grad
;
T
*
state_weight_grad
;
T
*
gate_grad
;
...
...
@@ -42,18 +41,18 @@ struct hl_gru_grad {
template
<
typename
DeviceContext
,
typename
T
>
struct
GRUUnitFunctor
{
static
void
compute
(
const
DeviceContext
&
context
,
hl_gru_v
alue
<
T
>
value
,
static
void
compute
(
const
DeviceContext
&
context
,
GRUMetaV
alue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_node
,
activation_mode_t
active_gate
);
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_gate
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
GRUUnitGradFunctor
{
static
void
compute
(
const
DeviceContext
&
context
,
hl_gru_v
alue
<
T
>
value
,
hl_gru_g
rad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
activation_mode_t
active_node
,
activation_mode_t
active_gate
);
static
void
compute
(
const
DeviceContext
&
context
,
GRUMetaV
alue
<
T
>
value
,
GRUMetaG
rad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_gate
);
};
}
// namespace math
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录