Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f71543ee
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f71543ee
编写于
9月 07, 2020
作者:
S
sandyhouse
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'add_timeline' into pipeline_exe_run
上级
27f245cd
0f752e89
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
404 addition
and
259 deletion
+404
-259
paddle/fluid/framework/device_worker.h
paddle/fluid/framework/device_worker.h
+1
-0
paddle/fluid/framework/pipeline_trainer.cc
paddle/fluid/framework/pipeline_trainer.cc
+30
-20
paddle/fluid/framework/section_worker.cc
paddle/fluid/framework/section_worker.cc
+278
-55
paddle/fluid/framework/trainer.h
paddle/fluid/framework/trainer.h
+0
-1
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+95
-183
未找到文件。
paddle/fluid/framework/device_worker.h
浏览文件 @
f71543ee
...
...
@@ -455,6 +455,7 @@ class SectionWorker : public DeviceWorker {
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
static
std
::
mutex
thread_mutex
;
static
std
::
mutex
cout_mutex
;
static
std
::
condition_variable
thread_condition
;
static
bool
threads_completed
;
std
::
shared_ptr
<
framework
::
ProgramDesc
>
program_
;
...
...
paddle/fluid/framework/pipeline_trainer.cc
浏览文件 @
f71543ee
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#if defined(PADDLE_WITH_NCCL)
#include <map>
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
...
...
@@ -44,7 +45,6 @@ void PipelineTrainer::Initialize(const TrainerDesc& trainer_desc,
"must be 1 now, but the value you give is %d."
,
num_readers
));
auto
*
reader
=
readers
[
0
];
feed_var_names_
=
reader
->
GetUseSlotAlias
();
workers_
.
resize
(
section_num_
);
for
(
int
i
=
0
;
i
<
section_num_
;
++
i
)
{
...
...
@@ -123,26 +123,36 @@ void PipelineTrainer::CopyParameters(int section_id, int microbatch_id,
const
ProgramDesc
&
program
,
const
platform
::
Place
&
place
)
{
auto
&
global_block
=
program
.
Block
(
0
);
std
::
map
<
std
::
string
,
int
>
param_map
;
for
(
auto
&
var
:
global_block
.
AllVars
())
{
int
is_feed_var
=
std
::
count
(
feed_var_names_
.
begin
(),
feed_var_names_
.
end
(),
var
->
Name
());
if
((
var
->
Persistable
()
||
is_feed_var
)
&&
microbatch_id
==
0
)
{
if
(
is_feed_var
)
{
auto
*
new_ptr
=
minibatch_scopes_
[
section_id
]
->
Var
(
var
->
Name
());
VLOG
(
3
)
<<
"data name: "
<<
var
->
Name
()
<<
", ptr: "
<<
new_ptr
;
InitializeVariable
(
new_ptr
,
var
->
GetType
());
}
else
{
if
(
var
->
Persistable
())
{
param_map
[
var
->
Name
()]
=
1
;
}
}
for
(
auto
&
var
:
global_block
.
AllVars
())
{
bool
is_param_grad
=
false
;
size_t
pos
=
0
;
if
((
pos
=
var
->
Name
().
find
(
kGradVarSuffix
))
!=
std
::
string
::
npos
)
{
auto
prefix_name
=
var
->
Name
().
substr
(
0
,
pos
);
if
(
param_map
.
find
(
prefix_name
)
!=
param_map
.
end
())
{
is_param_grad
=
true
;
}
}
VLOG
(
3
)
<<
"Var name: "
<<
var
->
Name
();
if
((
var
->
Persistable
()
||
is_param_grad
)
&&
microbatch_id
==
0
)
{
auto
*
ptr
=
root_scope_
->
FindVar
(
var
->
Name
());
auto
*
new_ptr
=
minibatch_scopes_
[
section_id
]
->
Var
(
var
->
Name
());
VLOG
(
3
)
<<
"Create persistable var "
<<
var
->
Name
()
<<
" for minibatch "
<<
section_id
<<
", which pointer is "
<<
new_ptr
;
InitializeVariable
(
new_ptr
,
var
->
GetType
());
if
(
is_param_grad
)
{
continue
;
}
const
LoDTensor
&
root_tensor
=
ptr
->
Get
<
LoDTensor
>
();
LoDTensor
*
minibatch_tensor
=
new_ptr
->
GetMutable
<
LoDTensor
>
();
TensorCopy
(
*
static_cast
<
const
Tensor
*>
(
&
root_tensor
),
place
,
static_cast
<
Tensor
*>
(
minibatch_tensor
));
}
}
else
if
(
!
var
->
Persistable
()
&&
!
is_feed_var
)
{
}
else
if
(
!
var
->
Persistable
()
&&
!
is_param_grad
)
{
auto
*
ptr
=
microbatch_scopes_
[
section_id
][
microbatch_id
]
->
Var
(
var
->
Name
());
VLOG
(
3
)
<<
"Create variable "
<<
var
->
Name
()
<<
" for section "
...
...
@@ -244,7 +254,7 @@ void PipelineTrainer::Finalize() {
const
LoDTensor
&
minibatch_tensor
=
minibatch_ptr
->
Get
<
LoDTensor
>
();
TensorCopy
(
*
static_cast
<
const
Tensor
*>
(
&
minibatch_tensor
),
places_
[
0
],
static_cast
<
Tensor
*>
(
root_tensor
));
VLOG
(
4
)
<<
"Copy persitable var "
<<
var
->
Name
()
<<
" to root scope"
;
VLOG
(
3
)
<<
"Copy persitable var "
<<
var
->
Name
()
<<
" to root scope"
;
}
}
}
...
...
paddle/fluid/framework/section_worker.cc
浏览文件 @
f71543ee
...
...
@@ -32,6 +32,7 @@ namespace framework {
std
::
atomic
<
int
>
SectionWorker
::
cpu_id_
(
0
);
std
::
mutex
SectionWorker
::
thread_mutex
;
std
::
mutex
SectionWorker
::
cout_mutex
;
std
::
condition_variable
SectionWorker
::
thread_condition
;
bool
SectionWorker
::
threads_completed
=
false
;
uint64_t
SectionWorker
::
batch_id_
(
0
);
...
...
@@ -103,9 +104,14 @@ void SectionWorker::TrainFiles() {
}
#endif
platform
::
Timer
batch_timer
;
if
(
thread_id_
==
0
)
{
while
(
true
)
{
// Start a minibatch.
// real number of microbatches run
int
real_microbatch_num
=
0
;
batch_timer
.
Start
();
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
try
{
for
(
auto
&
op
:
ops_
)
{
...
...
@@ -137,17 +143,21 @@ void SectionWorker::TrainFiles() {
VLOG
(
3
)
<<
"called notify all"
;
thread_condition
.
notify_all
();
VLOG
(
0
)
<<
"EOF encountered"
;
return
;
break
;
}
if
(
i
==
0
)
{
{
real_microbatch_num
+=
1
;
batch_id_
+=
1
;
VLOG
(
3
)
<<
"called notify all"
;
std
::
unique_lock
<
std
::
mutex
>
lk
(
thread_mutex
);
batch_id_
+=
1
;
thread_condition
.
notify_all
();
}
}
dev_ctx_
->
Wait
();
VLOG
(
0
)
<<
"real_microbatch_num for thread 0 "
<<
real_microbatch_num
;
// backward pass
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
for
(
int
i
=
0
;
i
<
real_microbatch_num
;
++
i
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
...
...
@@ -163,6 +173,12 @@ void SectionWorker::TrainFiles() {
}
}
}
dev_ctx_
->
Wait
();
if
(
real_microbatch_num
==
0
)
{
batch_timer
.
Pause
();
VLOG
(
0
)
<<
"batch time: "
<<
batch_timer
.
ElapsedUS
();
return
;
}
// update pass
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
...
...
@@ -177,9 +193,21 @@ void SectionWorker::TrainFiles() {
}
}
dev_ctx_
->
Wait
();
batch_timer
.
Pause
();
VLOG
(
0
)
<<
"batch time: "
<<
batch_timer
.
ElapsedUS
();
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
thread_mutex
);
if
(
threads_completed
)
{
return
;
}
}
}
}
else
{
while
(
true
)
{
// forward pass:
bool
local_completed
=
false
;
int
real_microbatch_num
=
0
;
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
{
PADDLE_ENFORCE_LE
(
local_batch_id_
,
batch_id_
,
...
...
@@ -197,13 +225,13 @@ void SectionWorker::TrainFiles() {
VLOG
(
3
)
<<
"thread "
<<
thread_id_
<<
" completed."
;
lk
.
unlock
();
threads_completed
=
false
;
return
;
local_completed
=
true
;
break
;
}
lk
.
unlock
();
local_batch_id_
+=
1
;
real_microbatch_num
+=
1
;
}
// forward pass:
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
...
...
@@ -227,8 +255,9 @@ void SectionWorker::TrainFiles() {
}
}
}
dev_ctx_
->
Wait
();
// backward pass
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
for
(
int
i
=
0
;
i
<
real_microbatch_num
;
++
i
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
...
...
@@ -244,7 +273,11 @@ void SectionWorker::TrainFiles() {
}
}
}
dev_ctx_
->
Wait
();
// update pass
if
(
real_microbatch_num
==
0
)
{
return
;
}
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
...
...
@@ -258,6 +291,9 @@ void SectionWorker::TrainFiles() {
}
}
dev_ctx_
->
Wait
();
if
(
local_completed
)
{
return
;
}
}
}
}
...
...
@@ -307,14 +343,20 @@ void SectionWorker::TrainFilesWithProfiler() {
#endif
if
(
thread_id_
==
0
)
{
struct
timeval
start
;
struct
timeval
end
;
struct
timeval
micro_start
;
struct
timeval
micro_end
;
while
(
true
)
{
// Start a minibatch.
// int batch_size = 0;
batch_timer
.
Start
();
int
real_microbatch_num
=
0
;
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
try
{
int
op_idx
=
0
;
gettimeofday
(
&
micro_start
,
NULL
);
for
(
auto
&
op
:
ops_
)
{
gettimeofday
(
&
start
,
NULL
);
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
// to avoid increasing the @LR_DECAY_STEP@ multiple times.
...
...
@@ -335,7 +377,9 @@ void SectionWorker::TrainFilesWithProfiler() {
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
cudaDeviceSynchronize
();
timeline
.
Pause
();
gettimeofday
(
&
end
,
NULL
);
auto
time
=
timeline
.
ElapsedUS
();
op_total_time
[
op_idx
]
+=
time
;
if
(
time
>
op_max_time
[
op_idx
])
{
...
...
@@ -346,9 +390,30 @@ void SectionWorker::TrainFilesWithProfiler() {
}
op_count
[
op_idx
]
+=
1
;
op_total_time
[
op_idx
]
+=
time
;
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
cout_mutex
);
std
::
cout
<<
std
::
fixed
;
std
::
cout
.
precision
(
0
);
std
::
cout
<<
"::FWD:B["
<<
batch_id_
<<
"]:SEC["
<<
thread_id_
<<
"]:SCOPE["
<<
i
<<
"]:OP["
<<
op
->
Type
()
<<
"]:START["
<<
start
.
tv_sec
*
1e6
+
start
.
tv_usec
<<
"]:END["
<<
end
.
tv_sec
*
1e6
+
end
.
tv_usec
<<
"]"
<<
std
::
endl
;
}
}
op_idx
++
;
}
gettimeofday
(
&
micro_end
,
NULL
);
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
cout_mutex
);
std
::
cout
<<
std
::
fixed
;
std
::
cout
.
precision
(
0
);
std
::
cout
<<
"!!FWD:B["
<<
batch_id_
<<
"]:SEC["
<<
thread_id_
<<
"]:START["
<<
micro_start
.
tv_sec
*
1e6
+
micro_start
.
tv_usec
<<
"]:END["
<<
micro_end
.
tv_sec
*
1e6
+
micro_end
.
tv_usec
<<
"]"
<<
std
::
endl
;
}
}
catch
(
platform
::
EOFException
&
)
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
thread_mutex
);
threads_completed
=
true
;
...
...
@@ -363,19 +428,23 @@ void SectionWorker::TrainFilesWithProfiler() {
<<
", mean_time: "
<<
op_total_time
[
i
]
/
op_count
[
i
];
}
VLOG
(
0
)
<<
"================================"
;
return
;
break
;
}
if
(
i
==
0
)
{
{
VLOG
(
3
)
<<
"called notify all"
;
std
::
unique_lock
<
std
::
mutex
>
lk
(
thread_mutex
);
real_microbatch_num
+=
1
;
batch_id_
+=
1
;
thread_condition
.
notify_all
();
}
}
dev_ctx_
->
Wait
();
// backward pass
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
for
(
int
i
=
0
;
i
<
real_microbatch_num
;
++
i
)
{
int
op_idx
=
0
;
gettimeofday
(
&
micro_start
,
NULL
);
for
(
auto
&
op
:
ops_
)
{
gettimeofday
(
&
start
,
NULL
);
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
...
...
@@ -388,6 +457,8 @@ void SectionWorker::TrainFilesWithProfiler() {
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
cudaDeviceSynchronize
();
gettimeofday
(
&
end
,
NULL
);
timeline
.
Pause
();
auto
time
=
timeline
.
ElapsedUS
();
op_total_time
[
op_idx
]
+=
time
;
...
...
@@ -399,13 +470,42 @@ void SectionWorker::TrainFilesWithProfiler() {
}
op_count
[
op_idx
]
+=
1
;
op_total_time
[
op_idx
]
+=
time
;
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
cout_mutex
);
std
::
cout
<<
std
::
fixed
;
std
::
cout
.
precision
(
0
);
std
::
cout
<<
"::BWD:B["
<<
batch_id_
<<
"]:SEC["
<<
thread_id_
<<
"]:SCOPE["
<<
i
<<
"]:OP["
<<
op
->
Type
()
<<
"]:START["
<<
start
.
tv_sec
*
1e6
+
start
.
tv_usec
<<
"]:END["
<<
end
.
tv_sec
*
1e6
+
end
.
tv_usec
<<
"]"
<<
std
::
endl
;
}
}
op_idx
++
;
}
gettimeofday
(
&
micro_end
,
NULL
);
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
cout_mutex
);
std
::
cout
<<
std
::
fixed
;
std
::
cout
.
precision
(
0
);
std
::
cout
<<
"!!BWD:B["
<<
batch_id_
<<
"]:SEC["
<<
thread_id_
<<
"]:START["
<<
micro_start
.
tv_sec
*
1e6
+
micro_start
.
tv_usec
<<
"]:END["
<<
micro_end
.
tv_sec
*
1e6
+
micro_end
.
tv_usec
<<
"]"
<<
std
::
endl
;
}
}
dev_ctx_
->
Wait
();
if
(
real_microbatch_num
==
0
)
{
batch_timer
.
Pause
();
VLOG
(
0
)
<<
"batch time: "
<<
batch_timer
.
ElapsedUS
();
return
;
}
// update pass
int
op_idx
=
0
;
gettimeofday
(
&
micro_start
,
NULL
);
for
(
auto
&
op
:
ops_
)
{
gettimeofday
(
&
start
,
NULL
);
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
...
...
@@ -416,6 +516,8 @@ void SectionWorker::TrainFilesWithProfiler() {
DeleteUnusedTensors
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
cudaDeviceSynchronize
();
gettimeofday
(
&
end
,
NULL
);
timeline
.
Pause
();
auto
time
=
timeline
.
ElapsedUS
();
op_total_time
[
op_idx
]
+=
time
;
...
...
@@ -427,15 +529,53 @@ void SectionWorker::TrainFilesWithProfiler() {
}
op_count
[
op_idx
]
+=
1
;
op_total_time
[
op_idx
]
+=
time
;
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
cout_mutex
);
std
::
cout
<<
std
::
fixed
;
std
::
cout
.
precision
(
0
);
std
::
cout
<<
"::UPD:B["
<<
batch_id_
<<
"]:SEC["
<<
thread_id_
<<
"]:SCOPE["
<<
num_microbatches_
<<
"]:OP["
<<
op
->
Type
()
<<
"]:START["
<<
start
.
tv_sec
*
1e6
+
start
.
tv_usec
<<
"]:END["
<<
end
.
tv_sec
*
1e6
+
end
.
tv_usec
<<
"]"
<<
std
::
endl
;
}
}
op_idx
++
;
}
gettimeofday
(
&
micro_end
,
NULL
);
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
cout_mutex
);
std
::
cout
<<
std
::
fixed
;
std
::
cout
.
precision
(
0
);
std
::
cout
<<
"!!UPD:B["
<<
batch_id_
<<
"]:SEC["
<<
thread_id_
<<
"]:START["
<<
micro_start
.
tv_sec
*
1e6
+
micro_start
.
tv_usec
<<
"]:END["
<<
micro_end
.
tv_sec
*
1e6
+
micro_end
.
tv_usec
<<
"]"
<<
std
::
endl
;
}
dev_ctx_
->
Wait
();
batch_timer
.
Pause
();
VLOG
(
0
)
<<
"batch time: "
<<
batch_timer
.
ElapsedUS
();
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
thread_mutex
);
if
(
threads_completed
)
{
return
;
}
}
}
}
else
{
struct
timeval
start
;
struct
timeval
end
;
struct
timeval
micro_start
;
struct
timeval
micro_end
;
cudaEvent_t
cu_start
,
cu_stop
;
cudaEventCreate
(
&
cu_start
);
cudaEventCreate
(
&
cu_stop
);
bool
local_completed
=
false
;
while
(
true
)
{
// forward pass:
int
real_microbatch_num
=
0
;
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
{
PADDLE_ENFORCE_LE
(
local_batch_id_
,
batch_id_
,
...
...
@@ -450,25 +590,27 @@ void SectionWorker::TrainFilesWithProfiler() {
VLOG
(
3
)
<<
"thread "
<<
thread_id_
<<
" local_batch_id_ "
<<
local_batch_id_
<<
" batch_id_ "
<<
batch_id_
;
if
(
threads_completed
)
{
local_completed
=
true
;
VLOG
(
3
)
<<
"thread "
<<
thread_id_
<<
" completed."
;
lk
.
unlock
();
VLOG
(
0
)
<<
"============timeline============"
;
for
(
size_t
i
=
0
;
i
<
ops_
.
size
();
++
i
)
{
VLOG
(
0
)
<<
"op: "
<<
op_name
[
i
]
<<
", max_time: "
<<
op_max_time
[
i
]
VLOG
(
0
)
<<
"op: "
<<
op_name
[
i
]
<<
", max_time: "
<<
op_max_time
[
i
]
<<
", min_time: "
<<
op_min_time
[
i
]
<<
", mean_time: "
<<
op_total_time
[
i
]
/
op_count
[
i
];
}
VLOG
(
0
)
<<
"================================"
;
threads_completed
=
false
;
return
;
break
;
}
lk
.
unlock
();
real_microbatch_num
+=
1
;
local_batch_id_
+=
1
;
}
// forward pass:
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
int
op_idx
=
0
;
gettimeofday
(
&
micro_start
,
NULL
);
for
(
auto
&
op
:
ops_
)
{
gettimeofday
(
&
start
,
NULL
);
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
// to avoid increasing the @LR_DECAY_STEP@ multiple times.
...
...
@@ -489,6 +631,8 @@ void SectionWorker::TrainFilesWithProfiler() {
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
cudaDeviceSynchronize
();
gettimeofday
(
&
end
,
NULL
);
timeline
.
Pause
();
auto
time
=
timeline
.
ElapsedUS
();
op_total_time
[
op_idx
]
+=
time
;
...
...
@@ -500,14 +644,38 @@ void SectionWorker::TrainFilesWithProfiler() {
}
op_count
[
op_idx
]
+=
1
;
op_total_time
[
op_idx
]
+=
time
;
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
cout_mutex
);
std
::
cout
<<
std
::
fixed
;
std
::
cout
.
precision
(
0
);
std
::
cout
<<
"::FWD:B["
<<
local_batch_id_
<<
"]:SEC["
<<
thread_id_
<<
"]:SCOPE["
<<
i
<<
"]:OP["
<<
op
->
Type
()
<<
"]:START["
<<
start
.
tv_sec
*
1e6
+
start
.
tv_usec
<<
"]:END["
<<
end
.
tv_sec
*
1e6
+
end
.
tv_usec
<<
"]"
<<
std
::
endl
;
}
}
op_idx
++
;
}
gettimeofday
(
&
micro_end
,
NULL
);
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
cout_mutex
);
std
::
cout
<<
std
::
fixed
;
std
::
cout
.
precision
(
0
);
std
::
cout
<<
"!!FWD:B["
<<
batch_id_
<<
"]:SEC["
<<
thread_id_
<<
"]:START["
<<
micro_start
.
tv_sec
*
1e6
+
micro_start
.
tv_usec
<<
"]:END["
<<
micro_end
.
tv_sec
*
1e6
+
micro_end
.
tv_usec
<<
"]"
<<
std
::
endl
;
}
}
dev_ctx_
->
Wait
();
// backward pass
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
for
(
int
i
=
0
;
i
<
real_microbatch_num
;
++
i
)
{
int
op_idx
=
0
;
gettimeofday
(
&
micro_start
,
NULL
);
for
(
auto
&
op
:
ops_
)
{
gettimeofday
(
&
start
,
NULL
);
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
...
...
@@ -520,6 +688,8 @@ void SectionWorker::TrainFilesWithProfiler() {
DeleteUnusedTensors
(
*
microbatch_scopes_
[
i
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
cudaDeviceSynchronize
();
gettimeofday
(
&
end
,
NULL
);
timeline
.
Pause
();
auto
time
=
timeline
.
ElapsedUS
();
op_total_time
[
op_idx
]
+=
time
;
...
...
@@ -531,13 +701,40 @@ void SectionWorker::TrainFilesWithProfiler() {
}
op_count
[
op_idx
]
+=
1
;
op_total_time
[
op_idx
]
+=
time
;
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
cout_mutex
);
std
::
cout
<<
std
::
fixed
;
std
::
cout
.
precision
(
0
);
std
::
cout
<<
"::BWD:B["
<<
local_batch_id_
<<
"]:SEC["
<<
thread_id_
<<
"]:SCOPE["
<<
i
<<
"]:OP["
<<
op
->
Type
()
<<
"]:START["
<<
start
.
tv_sec
*
1e6
+
start
.
tv_usec
<<
"]:END["
<<
end
.
tv_sec
*
1e6
+
end
.
tv_usec
<<
"]"
<<
std
::
endl
;
}
}
op_idx
++
;
}
gettimeofday
(
&
micro_end
,
NULL
);
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
cout_mutex
);
std
::
cout
<<
std
::
fixed
;
std
::
cout
.
precision
(
0
);
std
::
cout
<<
"!!BWD:B["
<<
batch_id_
<<
"]:SEC["
<<
thread_id_
<<
"]:START["
<<
micro_start
.
tv_sec
*
1e6
+
micro_start
.
tv_usec
<<
"]:END["
<<
micro_end
.
tv_sec
*
1e6
+
micro_end
.
tv_usec
<<
"]"
<<
std
::
endl
;
}
}
dev_ctx_
->
Wait
();
if
(
real_microbatch_num
==
0
)
{
return
;
}
// update pass
int
op_idx
=
0
;
gettimeofday
(
&
micro_start
,
NULL
);
for
(
auto
&
op
:
ops_
)
{
gettimeofday
(
&
start
,
NULL
);
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
VLOG
(
3
)
<<
"running an op "
<<
op
->
Type
()
<<
" for "
<<
thread_id_
...
...
@@ -548,6 +745,8 @@ void SectionWorker::TrainFilesWithProfiler() {
DeleteUnusedTensors
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
cudaDeviceSynchronize
();
gettimeofday
(
&
end
,
NULL
);
timeline
.
Pause
();
auto
time
=
timeline
.
ElapsedUS
();
op_total_time
[
op_idx
]
+=
time
;
...
...
@@ -559,10 +758,34 @@ void SectionWorker::TrainFilesWithProfiler() {
}
op_count
[
op_idx
]
+=
1
;
op_total_time
[
op_idx
]
+=
time
;
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
cout_mutex
);
std
::
cout
<<
std
::
fixed
;
std
::
cout
.
precision
(
0
);
std
::
cout
<<
"::UPD:B["
<<
batch_id_
<<
"]:SEC["
<<
thread_id_
<<
"]:SCOPE["
<<
num_microbatches_
<<
"]:OP["
<<
op
->
Type
()
<<
"]:START["
<<
start
.
tv_sec
*
1e6
+
start
.
tv_usec
<<
"]:END["
<<
end
.
tv_sec
*
1e6
+
end
.
tv_usec
<<
"]"
<<
std
::
endl
;
}
}
op_idx
++
;
}
gettimeofday
(
&
micro_end
,
NULL
);
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
cout_mutex
);
std
::
cout
<<
std
::
fixed
;
std
::
cout
.
precision
(
0
);
std
::
cout
<<
"!!UPD:B["
<<
batch_id_
<<
"]:SEC["
<<
thread_id_
<<
"]:START["
<<
micro_start
.
tv_sec
*
1e6
+
micro_start
.
tv_usec
<<
"]:END["
<<
micro_end
.
tv_sec
*
1e6
+
micro_end
.
tv_usec
<<
"]"
<<
std
::
endl
;
}
dev_ctx_
->
Wait
();
if
(
local_completed
)
{
return
;
}
}
}
}
...
...
paddle/fluid/framework/trainer.h
浏览文件 @
f71543ee
...
...
@@ -223,7 +223,6 @@ class PipelineTrainer : public TrainerBase {
int
section_num_
;
int
num_microbatches_
;
int
start_cpu_core_id_
;
std
::
vector
<
std
::
string
>
feed_var_names_
;
std
::
vector
<
platform
::
Place
>
places_
;
std
::
vector
<
std
::
vector
<
std
::
string
>>
skip_vars_
;
TrainerDesc
trainer_desc_
;
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
f71543ee
...
...
@@ -48,8 +48,9 @@ __all__ = [
'AdamOptimizer'
,
'AdamaxOptimizer'
,
'DpsgdOptimizer'
,
'DecayedAdagradOptimizer'
,
'RMSPropOptimizer'
,
'FtrlOptimizer'
,
'Adadelta'
,
'AdadeltaOptimizer'
,
'ModelAverage'
,
'LarsMomentum'
,
'LarsMomentumOptimizer'
,
'LambOptimizer'
,
'ExponentialMovingAverage'
,
'PipelineOptimizer'
,
'LookaheadOptimizer'
,
'RecomputeOptimizer'
'LarsMomentumOptimizer'
,
'DGCMomentumOptimizer'
,
'LambOptimizer'
,
'ExponentialMovingAverage'
,
'PipelineOptimizer'
,
'LookaheadOptimizer'
,
'RecomputeOptimizer'
]
...
...
@@ -3709,15 +3710,9 @@ class PipelineOptimizer(object):
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
batch_size = 1
filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
dataset.set_use_var([x,y])
dataset.set_batch_size(batch_size)
dataset.set_filelist(filelist)
data_loader.start()
exe.train_from_dataset(
fluid.default_main_program(),
dataset)
fluid.default_main_program())
data_loader.reset()
"""
...
...
@@ -3735,7 +3730,7 @@ class PipelineOptimizer(object):
"num_microbatches must be a positive value."
)
self
.
_num_microbatches
=
num_microbatches
assert
start_cpu_core_id
>=
0
,
(
"start_cpu_core_id must be
greater than or equal to 0
."
)
"start_cpu_core_id must be
a non negative integer
."
)
self
.
_start_cpu_core_id
=
start_cpu_core_id
self
.
_place_list
=
None
op_maker
=
core
.
op_proto_and_checker_maker
...
...
@@ -3743,7 +3738,7 @@ class PipelineOptimizer(object):
self
.
_op_role_key
=
op_maker
.
kOpRoleAttrName
()
self
.
_op_role_var_key
=
op_maker
.
kOpRoleVarAttrName
()
self
.
_op_device_key
=
op_maker
.
kOpDeviceAttrName
()
self
.
_param_device_map
=
dict
()
self
.
_param_device_map
=
None
def
_create_vars
(
self
,
block
,
main_program
):
# Create vars for block, copied from main_program's global block
...
...
@@ -3782,9 +3777,10 @@ class PipelineOptimizer(object):
return
'Param'
in
op
.
input_names
and
'Grad'
in
op
.
input_names
and
(
"LearningRate"
in
op
.
input_names
)
def
_split_program
(
self
,
main_program
):
def
_split_program
(
self
,
main_program
,
devices
):
"""
Split a program into sections according to devices that ops run on.
The ops of the role LRSched are copied to all sections.
Args:
main_program (Program): the main program
...
...
@@ -3792,14 +3788,23 @@ class PipelineOptimizer(object):
programs
=
[]
# Map from device to its corresponding section program info
device_program_map
=
dict
()
block
=
main_program
.
block
(
0
)
for
device
in
devices
:
p
=
{
'program'
:
Program
()}
device_program_map
[
device
]
=
p
block
=
main_program
.
block
(
0
)
for
op
in
block
.
ops
:
device
=
op
.
attr
(
self
.
_op_device_key
)
if
device
not
in
device_program_map
:
program
=
{
"program"
:
Program
()}
device_program_map
[
device
]
=
program
op_role
=
op
.
attr
(
self
.
_op_role_key
)
if
int
(
op_role
)
&
int
(
self
.
_op_role
.
LRSched
):
# Copy ops of the role LRSched to all sections.
for
device
in
device_program_map
.
keys
():
program
=
device_program_map
[
device
]
op_desc
=
op
.
desc
ap_op
=
program
[
"program"
].
block
(
0
).
desc
.
append_op
()
ap_op
.
copy_from
(
op_desc
)
ap_op
.
_set_attr
(
self
.
_op_device_key
,
device
)
else
:
program
=
device_program_map
[
device
]
op_desc
=
op
.
desc
ap_op
=
program
[
"program"
].
block
(
0
).
desc
.
append_op
()
...
...
@@ -3833,9 +3838,8 @@ class PipelineOptimizer(object):
for
in_var_name
in
op
.
input_arg_names
:
if
in_var_name
==
var_name
:
post_op
.
append
(
op
)
break
if
post_op
:
if
not
len
(
post_op
)
==
1
:
raise
ValueError
(
"Each op can only have one post op."
)
return
post_op
[
0
]
return
None
...
...
@@ -3890,60 +3894,26 @@ class PipelineOptimizer(object):
def
_get_data_var_info
(
self
,
block
):
"""
Get all vars whose is_data attribute are true and then rename them.
For PipelineTrainer, all data vars are binded to
minibatch scope, so we have to feed them to the microbatch
to avoid conflicts. The vars feeded to microbatch have to
be renamed.
"""
# A map from var name to the renamed name.
raw_name_new_name_map
=
dict
()
# Because we will create vars in block, it is more safe
# to get all var_names before iteration.
var_names
=
list
(
block
.
vars
.
keys
())
for
var_name
in
var_names
:
var
=
block
.
var
(
var_name
)
if
not
var
.
is_data
:
continue
assert
var_name
not
in
raw_name_new_name_map
,
(
"{} has already been processed."
.
format
(
var_name
))
new_name
=
unique_name
.
generate
(
var_name
)
raw_name_new_name_map
[
var_name
]
=
new_name
new_var
=
self
.
_create_var
(
block
,
var
,
new_name
)
new_var
.
is_data
=
False
# map of data to devices that that data on
# map of data vars to devices that that data on
data_devices_map
=
dict
()
for
op
in
block
.
ops
:
dev_spec
=
op
.
attr
(
self
.
_op_device_key
)
for
var_name
in
op
.
input_arg_names
:
if
var_name
not
in
raw_name_new_name_map
:
if
"blocking_queue"
in
var_name
:
continue
var
=
block
.
var
(
var_name
)
if
not
var
.
is_data
:
continue
if
not
var_name
in
data_devices_map
:
data_devices_map
[
var_name
]
=
[]
if
not
dev_spec
in
data_devices_map
[
var_name
]:
data_devices_map
[
var_name
].
append
(
dev_spec
)
new_name
=
raw_name_new_name_map
[
var_name
]
#self._rename_arg(op, var_name, new_name)
return
data_devices_map
,
raw_name_new_name_map
def
_rename_var_in_block
(
self
,
block
,
raw_name_new_name_map
):
"""
Rename vars whose names in raw_name_new_name_map to the corresponding
new names.
"""
for
op
in
block
.
ops
:
if
op
.
type
==
"enqueue"
or
op
.
type
==
"dequeue"
:
continue
for
var_name
in
op
.
input_arg_names
:
if
var_name
in
raw_name_new_name_map
:
new_name
=
raw_name_new_name_map
[
var_name
]
self
.
_rename_arg
(
op
,
var_name
,
new_name
)
return
data_devices_map
def
_insert_enq_deq_for_data_var
(
self
,
main_block
,
programs
,
startup
,
devices
):
"""
Insert enqueue and dequeue ops for data var
Insert enqueue and dequeue ops for data var
that on other devices.
Args:
main_block (Block): Global block for main program
...
...
@@ -3952,22 +3922,19 @@ class PipelineOptimizer(object):
devices (list): List of devices in the format (dev:dev_index)
"""
main_program
=
main_block
.
program
data_devices_map
,
raw_name_new_name_map
=
self
.
_get_data_var_info
(
main_block
)
data_devices_map
=
self
.
_get_data_var_info
(
main_block
)
first_prog
=
programs
[
0
][
'program'
]
first_block
=
first_prog
.
block
(
0
)
enqueue_index
=
0
if
first_block
.
ops
[
0
].
type
==
"create_py_reader"
or
(
first_block
.
ops
[
1
].
type
==
"create_py_reader"
):
for
op
in
first_block
.
ops
:
if
op
.
type
==
"read"
:
enqueue_index
+=
1
if
op
.
type
==
"read"
:
break
enqueue_index
+=
1
first_dev_spec
=
devices
[
0
]
for
var_name
in
data_devices_map
.
keys
():
for
device
in
data_devices_map
[
var_name
]:
if
device
==
first_dev_spec
:
continue
# step1: generate queue for each pair of data var and device
# that that data on
queue_name
=
var_name
+
"_blocking_queue"
...
...
@@ -4001,13 +3968,10 @@ class PipelineOptimizer(object):
prog
=
programs
[
prog_index
][
'program'
]
block
=
prog
.
block
(
0
)
index
=
0
if
device
==
first_dev_spec
:
index
=
enqueue_index
+
1
new_name
=
raw_name_new_name_map
[
var_name
]
source_var
=
main_program
.
block
(
0
).
var
(
var_name
)
new_var
=
self
.
_create_var
(
block
,
source_var
,
new
_name
)
new_var
=
self
.
_create_var
(
block
,
source_var
,
var
_name
)
block
.
_insert_op
(
index
=
index
,
index
=
0
,
type
=
'dequeue'
,
outputs
=
{
'Out'
:
[
new_var
]},
attrs
=
{
...
...
@@ -4015,7 +3979,6 @@ class PipelineOptimizer(object):
self
.
_op_role_key
:
self
.
_op_role
.
Forward
,
'queue_name'
:
queue_name
,
})
self
.
_rename_var_in_block
(
block
,
raw_name_new_name_map
)
def
_strip_grad_suffix
(
self
,
name
):
"""
...
...
@@ -4030,18 +3993,6 @@ class PipelineOptimizer(object):
"""
return
name
+
core
.
grad_var_suffix
()
def
_update_param_device_map
(
self
,
params_grads
,
block
):
for
param_grad
in
params_grads
:
if
not
param_grad
[
0
].
trainable
:
continue
param_name
=
param_grad
[
0
].
name
ops
=
block
.
ops
for
op
in
ops
:
input_arg_names
=
op
.
input_arg_names
if
param_name
in
input_arg_names
:
self
.
_param_device_map
[
param_name
]
=
op
.
attr
(
self
.
_op_device_key
)
break
def
_add_opdevice_attr_for_regularization_clip
(
self
,
block
):
"""
Add op_device attribute for regulization and clip ops.
...
...
@@ -4056,7 +4007,7 @@ class PipelineOptimizer(object):
assert
self
.
_op_role_var_key
in
op
.
attr_names
op_role_var
=
op
.
all_attrs
()[
self
.
_op_role_var_key
]
assert
len
(
op_role_var
)
==
2
param_name
=
block
.
vars
[
op_role_var
[
0
]].
name
param_name
=
op_role_var
[
0
]
device
=
self
.
_param_device_map
[
param_name
]
op
.
_set_attr
(
self
.
_op_device_key
,
device
)
...
...
@@ -4125,6 +4076,8 @@ class PipelineOptimizer(object):
"{} has not been set."
.
format
(
op
.
type
))
if
not
dev_spec
in
device_specs
:
device_specs
.
append
(
dev_spec
)
sorted_device_specs
=
sorted
(
device_specs
)
assert
sorted_device_specs
==
device_specs
return
device_specs
def
_insert_enq_deq_ops_for_boundaries
(
self
,
block
,
origin_block
,
...
...
@@ -4141,6 +4094,11 @@ class PipelineOptimizer(object):
var_devspec
=
dict
()
for
index
,
op
in
list
(
enumerate
(
origin_block
.
ops
)):
# skips lr-related op and vars, as we will process them later.
if
int
(
op
.
attr
(
self
.
_op_role_key
))
&
int
(
self
.
_op_role
.
LRSched
):
continue
if
self
.
_is_update_op
(
op
):
continue
cur_device_spec
=
op
.
attr
(
self
.
_op_device_key
)
for
var_name
in
op
.
input_arg_names
:
# i.e., lod_tensor_blocking_queue created by DataLoader,
...
...
@@ -4196,82 +4154,32 @@ class PipelineOptimizer(object):
})
extra_index
+=
1
def
_add_dequeue_ops_for_optimize
(
self
,
block
,
startup_program
):
startup_block
=
startup_program
.
global_block
()
grad_queue_map
=
dict
()
grad_device_map
=
dict
()
optimize_index
=
None
grad_names_to_dequeue
=
[]
for
index
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
device
=
op
.
attr
(
self
.
_op_device_key
)
# Optimizer pass
if
not
self
.
_is_optimize_op
(
op
):
optimize_index
=
index
+
1
break
if
not
self
.
_is_update_op
(
op
):
continue
assert
self
.
_op_role_var_key
in
op
.
attr_names
op_role_var
=
op
.
all_attrs
()[
self
.
_op_role_var_key
]
assert
len
(
op_role_var
)
==
2
grad_name
=
op_role_var
[
1
]
assert
grad_name
not
in
grad_device_map
assert
grad_name
not
in
grad_names_to_dequeue
grad_device_map
[
grad_name
]
=
device
grad_names_to_dequeue
.
append
(
grad_name
)
for
grad_name
in
grad_names_to_dequeue
:
device
=
grad_device_map
[
grad_name
]
grad_names
=
[]
grads
=
[]
queue_name
=
grad_name
+
"_blocking_queue"
queue_name
=
unique_name
.
generate
(
queue_name
)
grad_queue_map
[
grad_name
]
=
queue_name
ref_var
=
block
.
vars
[
grad_name
]
queue_var
=
startup_block
.
create_var
(
name
=
queue_name
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
startup_block
.
append_op
(
type
=
'queue_generator'
,
attrs
=
{
'names'
:
[
queue_name
],
'capacity'
:
self
.
_num_microbatches
})
orig_var_name
=
self
.
_strip_grad_suffix
(
grad_name
)
for
_
in
range
(
self
.
_num_microbatches
):
u_name
=
unique_name
.
generate
(
orig_var_name
)
u_grad_name
=
self
.
_append_grad_suffix
(
u_name
)
grad_var
=
self
.
_create_var
(
block
,
ref_var
,
u_grad_name
)
grad_names
.
append
(
u_grad_name
)
grads
.
append
(
grad_var
)
block
.
_insert_op
(
index
=
optimize_index
,
type
=
'dequeue'
,
outputs
=
{
'Out'
:
grads
},
attrs
=
{
self
.
_op_device_key
:
device
,
'queue_name'
:
queue_name
,
self
.
_op_role_key
:
self
.
_op_role
.
Optimize
})
block
.
_insert_op
(
index
=
optimize_index
+
1
,
type
=
'sum'
,
inputs
=
{
'X'
:
grad_names
},
outputs
=
{
'Out'
:
ref_var
},
def
_clear_gradients
(
self
,
main_block
):
"""
Clear gradients at the begining of each run of a minibatch.
"""
for
param_name
in
self
.
_param_device_map
:
grad_name
=
self
.
_append_grad_suffix
(
param_name
)
param_var
=
main_block
.
vars
[
param_name
]
grad_var
=
main_block
.
vars
[
grad_name
]
device
=
self
.
_param_device_map
[
param_name
]
main_block
.
_insert_op
(
index
=
0
,
type
=
'fill_constant'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
grad_var
]},
attrs
=
{
'shape'
:
grad_var
.
shape
,
'dtype'
:
grad_var
.
dtype
,
'value'
:
float
(
0
),
self
.
_op_device_key
:
device
,
self
.
_op_role_key
:
self
.
_op_role
.
Optimize
self
.
_op_role_key
:
self
.
_op_role
.
Optimize
.
LRSched
,
})
return
grad_queue_map
def
_
insert_enq_deq_ops_for_update
(
self
,
block
,
startup_program
):
def
_
accumulate_gradients
(
self
,
block
):
"""
Insert enqueue and dequeue ops for gradients of parameters
.
Accumulate the graident generated in microbatch to the one in mini-batch
.
"""
startup_block
=
startup_program
.
global_block
()
grad_queue_map
=
self
.
_add_dequeue_ops_for_optimize
(
block
,
startup_program
)
for
index
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
offset
=
index
device
=
op
.
attr
(
self
.
_op_device_key
)
...
...
@@ -4298,19 +4206,25 @@ class PipelineOptimizer(object):
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
offset
=
index
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
grad_name
=
op_role_var
[
i
+
1
]
grad_var
=
block
.
vars
[
grad_name
]
assert
grad_name
in
grad_queue_map
queue_name
=
grad_queue_map
[
grad_name
]
param_name
=
op_role_var
[
i
]
param_var
=
block
.
vars
[
param_name
]
new_var_name
=
unique_name
.
generate
(
param_name
)
new_var_name
=
self
.
_append_grad_suffix
(
new_var_name
)
new_var
=
self
.
_create_var
(
block
,
grad_var
,
new_var_name
)
self
.
_rename_arg
(
op
,
grad_name
,
new_var_name
)
block
.
_insert_op
(
index
=
offset
+
1
,
type
=
'enqueue'
,
inputs
=
{
'X'
:
block
.
vars
[
grad_name
]},
type
=
'sum'
,
inputs
=
{
'X'
:
[
grad_var
,
new_var
]},
outputs
=
{
'Out'
:
grad_var
},
attrs
=
{
'queue_name'
:
queue_name
,
self
.
_op_device_key
:
device
,
self
.
_op_role_key
:
self
.
_op_role
.
Backward
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
self
.
_op_role_var_key
:
op_role_var
})
offset
+=
1
...
...
@@ -4333,6 +4247,7 @@ class PipelineOptimizer(object):
def
_get_device_info
(
self
,
block
):
for
op
in
block
.
ops
:
if
not
op
.
_has_kernel
(
op
.
type
):
continue
op_device
=
op
.
attr
(
self
.
_op_device_key
)
return
op_device
...
...
@@ -4438,14 +4353,16 @@ class PipelineOptimizer(object):
startup_program
=
default_startup_program
()
optimize_ops
,
params_grads
=
self
.
_optimizer
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
self
.
_
update_param_device_map
(
params_grads
,
main_block
)
self
.
_
param_device_map
=
self
.
_optimizer
.
_param_device_map
# Step1: add default op_device attribute for regulization and clip ops
self
.
_add_opdevice_attr_for_regularization_clip
(
main_block
)
# Step2: add default op_device attribute for ops whose op_device
# attribute have not been set yet.
# attribute have not been set yet. Then check all ops have the
# op_device attribute.
self
.
_add_default_opdevice_attr
(
main_block
)
device_specs
=
self
.
_check_validation
(
main_block
)
# Step3: add enqueue and dequeue ops between section boundaries
...
...
@@ -4454,8 +4371,10 @@ class PipelineOptimizer(object):
self
.
_insert_enq_deq_ops_for_boundaries
(
main_block
,
origin_main_block
,
startup_program
)
# Step4: add a pair of enqueue and dequeueN for parameter gradients
self
.
_insert_enq_deq_ops_for_update
(
main_block
,
startup_program
)
# Step4: accumulate gradients during backward
# and clear them after update
self
.
_clear_gradients
(
main_block
)
self
.
_accumulate_gradients
(
main_block
)
main_program
=
main_block
.
program
...
...
@@ -4474,16 +4393,9 @@ class PipelineOptimizer(object):
# Step5: split program into sections and add pairs of
# enqueue and dequeue ops for data var.
if
len
(
place_list
)
==
0
:
program_list
=
[]
ptmp
=
{
"program"
:
main_program
,
"input_set"
:
set
(),
"output_set"
:
set
()
}
program_list
.
append
(
ptmp
)
else
:
program_list
=
self
.
_split_program
(
main_program
)
if
len
(
place_list
)
<=
1
:
raise
ValueError
(
"Run on one device, do not use pipeline."
)
program_list
=
self
.
_split_program
(
main_program
,
device_specs
)
for
p
in
program_list
:
self
.
_create_vars
(
p
[
"program"
].
block
(
0
),
main_program
)
self
.
_insert_enq_deq_for_data_var
(
main_block
,
program_list
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录