未验证 提交 f5fc9c3b 编写于 作者: Y Yan Chunwei 提交者: GitHub

feature/mul converter (#10841)

上级 8f7b020b
...@@ -24,6 +24,15 @@ namespace paddle { ...@@ -24,6 +24,15 @@ namespace paddle {
namespace inference { namespace inference {
namespace analysis { namespace analysis {
template <typename Vec>
int AccuDims(Vec &&vec, int size) {
int res = 1;
for (int i = 0; i < size; i++) {
res *= std::forward<Vec>(vec)[i];
}
return res;
}
#define SET_TYPE(type__) dic_[typeid(type__).hash_code()] = #type__; #define SET_TYPE(type__) dic_[typeid(type__).hash_code()] = #type__;
/* /*
* Map typeid to representation. * Map typeid to representation.
...@@ -101,7 +110,5 @@ class OrderedRegistry { ...@@ -101,7 +110,5 @@ class OrderedRegistry {
} // namespace paddle } // namespace paddle
#define PADDLE_DISALLOW_COPY_AND_ASSIGN(type__) \ #define PADDLE_DISALLOW_COPY_AND_ASSIGN(type__) \
\
type__(const type__ &) = delete; \ type__(const type__ &) = delete; \
\
void operator=(const type__ &) = delete; void operator=(const type__ &) = delete;
nv_test(test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ${FLUID_CORE_MODULES}) # Add TRT tests
nv_test(test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ${FLUID_CORE_MODULES} tensorrt_engine)
# This test is not stable # This test is not stable
# See https://paddleci.ngrok.io/viewLog.html?tab=buildLog&buildTypeId=Paddle_PrCi2&buildId=36834&_focus=8828 # See https://paddleci.ngrok.io/viewLog.html?tab=buildLog&buildTypeId=Paddle_PrCi2&buildId=36834&_focus=8828
#nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc io_converter.cc #nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc io_converter.cc
# DEPS ${FLUID_CORE_MODULES} activation_op tensorrt_engine # DEPS ${FLUID_CORE_MODULES} activation_op tensorrt_engine
# SERIAL) # SERIAL)
nv_test(test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor) nv_test(test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor)
nv_test(test_trt_mul_op SRCS test_mul_op.cc mul_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine mul_op SERIAL)
...@@ -18,11 +18,25 @@ namespace paddle { ...@@ -18,11 +18,25 @@ namespace paddle {
namespace inference { namespace inference {
namespace tensorrt { namespace tensorrt {
/*
* MulOp, IMatrixMultiplyLayer in TRT. This Layer doesn't has weights.
*/
class MulOpConverter : public OpConverter { class MulOpConverter : public OpConverter {
public: public:
MulOpConverter() {} MulOpConverter() {}
void operator()(const framework::proto::OpDesc& op) override { void operator()(const framework::proto::OpDesc& op) override {
LOG(INFO) << "convert a fluid mul op to tensorrt fc layer without bias"; VLOG(4) << "convert a fluid mul op to tensorrt fc layer without bias";
framework::OpDesc op_desc(op, nullptr, nullptr);
// Declare inputs
auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
auto* input2 = engine_->GetITensor(op_desc.Input("Y")[0]);
// Both the input1 and input2 do not need transpose.
auto* layer = TRT_ENGINE_ADD_LAYER(
engine_, MatrixMultiply, *const_cast<nvinfer1::ITensor*>(input1), false,
*const_cast<nvinfer1::ITensor*>(input2), false);
engine_->DeclareOutput(layer, 0, op_desc.Output("Out")[0]);
} }
}; };
......
...@@ -102,3 +102,5 @@ TEST(OpConverter, ConvertRelu) { ...@@ -102,3 +102,5 @@ TEST(OpConverter, ConvertRelu) {
} // namespace tensorrt } // namespace tensorrt
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
USE_OP(activation);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
namespace paddle {
namespace inference {
namespace tensorrt {
TEST(MulOpConverter, main) {
TRTConvertValidation validator(10, 1000);
validator.DeclInputVar("mul-X", nvinfer1::Dims2(10, 6));
validator.DeclInputVar("mul-Y", nvinfer1::Dims2(6, 10));
validator.DeclOutputVar("mul-Out", nvinfer1::Dims2(10, 10));
// Prepare Op description
framework::OpDesc desc;
desc.SetType("mul");
desc.SetInput("X", {"mul-X"});
desc.SetInput("Y", {"mul-Y"});
desc.SetOutput("Out", {"mul-Out"});
LOG(INFO) << "set OP";
validator.SetOp(*desc.Proto());
LOG(INFO) << "execute";
validator.Execute(10);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
USE_OP(mul);
...@@ -23,8 +23,6 @@ namespace tensorrt { ...@@ -23,8 +23,6 @@ namespace tensorrt {
TEST(OpConverter, ConvertBlock) { TEST(OpConverter, ConvertBlock) {
framework::ProgramDesc prog; framework::ProgramDesc prog;
auto* block = prog.MutableBlock(0); auto* block = prog.MutableBlock(0);
auto* mul_op = block->AppendOp();
mul_op->SetType("mul");
auto* conv2d_op = block->AppendOp(); auto* conv2d_op = block->AppendOp();
conv2d_op->SetType("conv2d"); conv2d_op->SetType("conv2d");
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file implements a UT framework to make the validation of transforming
* Fluid Op to TRT Layer.
*/
#pragma once
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* Get a random float value between [low, high]
*/
float random(float low, float high) {
static std::random_device rd;
static std::mt19937 mt(rd());
std::uniform_real_distribution<double> dist(1.0, 10.0);
return dist(mt);
}
void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
const platform::DeviceContext& ctx) {
auto dims = tensor->dims();
size_t num_elements = analysis::AccuDims(dims, dims.size());
PADDLE_ENFORCE_GT(num_elements, 0);
auto* data = tensor->mutable_data<float>(place);
for (size_t i = 0; i < num_elements; i++) {
*(data + i) = random(0., 1.);
}
}
/*
* Help to validate the correctness between Fluid Op and the corresponding TRT
* layer.
*/
class TRTConvertValidation {
public:
TRTConvertValidation() = delete;
TRTConvertValidation(int batch_size, int workspace_size = 1 << 10) {
// create engine.
engine_.reset(new TensorRTEngine(10, 1 << 10, &stream_));
engine_->InitNetwork();
PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
}
// Declare a Variable as input with random initialization.
void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
DeclVar(name, dims);
// Declare TRT inputs.
engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
}
void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
DeclVar(name, dims);
}
void DeclVar(const std::string& name, const nvinfer1::Dims& dims) {
platform::CPUPlace place;
platform::CPUDeviceContext ctx(place);
// Init Fluid tensor.
std::vector<int> dim_vec(dims.nbDims);
for (int i = 0; i < dims.nbDims; i++) {
dim_vec[i] = dims.d[i];
}
auto* x = scope_.Var(name);
auto* x_tensor = x->GetMutable<framework::LoDTensor>();
x_tensor->Resize(framework::make_ddim(dim_vec));
RandomizeTensor(x_tensor, place, ctx);
}
void SetOp(const framework::proto::OpDesc& desc) {
op_ = framework::OpRegistry::CreateOp(desc);
OpConverter op_converter;
op_converter.ConvertOp(desc, engine_.get());
engine_->FreezeNetwork();
// Declare outputs.
op_desc_.reset(new framework::OpDesc(desc, nullptr, nullptr));
// Set Inputs.
for (const auto& input : op_desc_->InputArgumentNames()) {
auto* var = scope_.FindVar(input);
PADDLE_ENFORCE(var);
auto tensor = var->GetMutable<framework::LoDTensor>();
engine_->SetInputFromCPU(
input, static_cast<void*>(tensor->data<float>()),
sizeof(float) *
analysis::AccuDims(tensor->dims(), tensor->dims().size()));
}
}
void Execute(int batch_size) {
// Execute Fluid Op
// Execute TRT
platform::CPUPlace place;
platform::CPUDeviceContext ctx(place);
engine_->Execute(batch_size);
op_->Run(scope_, place);
ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
for (const auto& output : op_desc_->OutputArgumentNames()) {
std::vector<float> fluid_out;
std::vector<float> trt_out(200);
engine_->GetOutputInCPU(output, &trt_out[0], 200 * sizeof(float));
auto* var = scope_.FindVar(output);
auto tensor = var->GetMutable<framework::LoDTensor>();
framework::TensorToVector(*tensor, ctx, &fluid_out);
// Compare two output
ASSERT_FALSE(fluid_out.empty());
for (size_t i = 0; i < fluid_out.size(); i++) {
EXPECT_LT(std::abs(fluid_out[i] - trt_out[i]), 0.001);
}
}
}
framework::Scope& scope() { return scope_; }
private:
std::unique_ptr<TensorRTEngine> engine_;
cudaStream_t stream_;
framework::Scope scope_;
std::unique_ptr<framework::OperatorBase> op_;
std::unique_ptr<framework::OpDesc> op_desc_;
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
...@@ -18,6 +18,7 @@ limitations under the License. */ ...@@ -18,6 +18,7 @@ limitations under the License. */
#include <cuda.h> #include <cuda.h>
#include <glog/logging.h> #include <glog/logging.h>
#include <string> #include <string>
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/helper.h" #include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/enforce.h"
...@@ -71,9 +72,10 @@ void TensorRTEngine::FreezeNetwork() { ...@@ -71,9 +72,10 @@ void TensorRTEngine::FreezeNetwork() {
for (auto& item : buffer_sizes_) { for (auto& item : buffer_sizes_) {
if (item.second == 0) { if (item.second == 0) {
auto slot_offset = infer_engine_->getBindingIndex(item.first.c_str()); auto slot_offset = infer_engine_->getBindingIndex(item.first.c_str());
auto dims = infer_engine_->getBindingDimensions(slot_offset);
item.second = kDataTypeSize[static_cast<int>( item.second = kDataTypeSize[static_cast<int>(
infer_engine_->getBindingDataType(slot_offset))] * infer_engine_->getBindingDataType(slot_offset))] *
AccumDims(infer_engine_->getBindingDimensions(slot_offset)); analysis::AccuDims(dims.d, dims.nbDims);
} }
auto& buf = buffer(item.first); auto& buf = buffer(item.first);
CHECK(buf.buffer == nullptr); // buffer should be allocated only once. CHECK(buf.buffer == nullptr); // buffer should be allocated only once.
...@@ -85,14 +87,15 @@ void TensorRTEngine::FreezeNetwork() { ...@@ -85,14 +87,15 @@ void TensorRTEngine::FreezeNetwork() {
nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name, nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name,
nvinfer1::DataType dtype, nvinfer1::DataType dtype,
const nvinfer1::Dims& dim) { const nvinfer1::Dims& dims) {
PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s", PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
name); name);
PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first"); PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
auto* input = infer_network_->addInput(name.c_str(), dtype, dim); auto* input = infer_network_->addInput(name.c_str(), dtype, dims);
PADDLE_ENFORCE(input, "infer network add input %s failed", name); PADDLE_ENFORCE(input, "infer network add input %s failed", name);
buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] * AccumDims(dim); buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
analysis::AccuDims(dims.d, dims.nbDims);
TensorRTEngine::SetITensor(name, input); TensorRTEngine::SetITensor(name, input);
return input; return input;
} }
...@@ -162,13 +165,13 @@ void TensorRTEngine::SetInputFromCPU(const std::string& name, void* data, ...@@ -162,13 +165,13 @@ void TensorRTEngine::SetInputFromCPU(const std::string& name, void* data,
void TensorRTEngine::SetITensor(const std::string& name, void TensorRTEngine::SetITensor(const std::string& name,
nvinfer1::ITensor* tensor) { nvinfer1::ITensor* tensor) {
PADDLE_ENFORCE(tensor != nullptr); PADDLE_ENFORCE(tensor != nullptr);
PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate itensor name %s", PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
name); name);
itensor_map_[name] = tensor; itensor_map_[name] = tensor;
} }
nvinfer1::ITensor* TensorRTEngine::GetITensor(const std::string& name) { nvinfer1::ITensor* TensorRTEngine::GetITensor(const std::string& name) {
PADDLE_ENFORCE(itensor_map_.count(name), "no itensor %s", name); PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
return itensor_map_[name]; return itensor_map_[name];
} }
......
...@@ -26,15 +26,6 @@ namespace tensorrt { ...@@ -26,15 +26,6 @@ namespace tensorrt {
namespace dy = paddle::platform::dynload; namespace dy = paddle::platform::dynload;
static size_t AccumDims(nvinfer1::Dims dims) {
size_t num = dims.nbDims == 0 ? 0 : 1;
for (int i = 0; i < dims.nbDims; i++) {
PADDLE_ENFORCE_GT(dims.d[i], 0);
num *= dims.d[i];
}
return num;
}
// TensorRT data type to size // TensorRT data type to size
const int kDataTypeSize[] = { const int kDataTypeSize[] = {
4, // kFLOAT 4, // kFLOAT
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册